

Microsoft Windows PowerShell
3.0 First Look

A quick, succinct guide to the new and exciting features
in PowerShell 3.0

Adam Driscoll

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

Microsoft Windows PowerShell 3.0 First Look

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1260912

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-644-0

www.packtpub.com

Cover Image by Tina Negus (tina_manthorpe@sky.com)

Credits

Author
Adam Driscoll

Reviewers
Chris Dent

Shay Levy

David Karapetyan

Acquisition Editor
Dhwani Devater

Lead Technical Editor
Susmita Panda

Technical Editor
Prasanna Joglekar

Project Coordinator
Yashodhan Dere

Proofreader
Linda Morris

Indexers
Hemangini Bari

Tejal Daruwale

Graphics
Manu Joseph

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Adam Driscoll is a young and enthusiastic Software Developer and Team Lead at
Quest Software. Born and raised in Wisconsin, Adam attended Edgewood College
in Madison, WI and was hired shortly thereafter by Quest. He has experience in
authoring PowerShell modules and providers in both .NET and PowerShell, building
PowerShell development tools for developers and administrators and frequently
blogs about .NET technologies.

I would like to thank my mother and father for always believing in
me and supporting me. I wouldn't have been able to complete this
without them. I would also like to thank my family and friends for
providing encouragement throughout the process of writing this
book. Finally, I would like to thank Carrie Arnold and Shay Levy for
providing additional editorial guidance during the authoring of this
book. Their help ensured that the quality of the book was far beyond
what I could do alone.

About the Reviewers

Chris Dent is an Automation Specialist with over 10 years experience working
with Microsoft and networking technologies. Chris has worked with PowerShell
since 2007 specialising in network protocols and management.

My thanks should go to my wife Emily, for her endless patience in
the face of incessant clattering from my keyboard in the evenings.

Shay Levy is a Systems Engineer working for a government institute in Israel. He
has over 20 years of experience, focusing on Microsoft server platforms, especially
on Exchange and Active Directory. For his contribution to the community he has
been awarded with the Microsoft Most Valuable Professional (MVP) award for
four years in a row. As a Microsoft Certified Trainer (MCT) he has taught numerous
courses at John Bryce training center, Israel's largest computer training center.
He is the Co-Founder and Editor of the PowerShellMagazine.com website and a
Co-Director of the PowerShellCommunity.org website. Shay was also a technical
reviewer of several books, including the Microsoft Exchange 2010 PowerShell
Cookbook from Packt publishing. He often covers PowerShell related topics on
his blog http://PowerShay.com and you can also follow him on Twitter at
http://twitter.com/ShayLevy.

Not unlike many programmers David Karapetyan stumbled into programming
while trying to attain a graduate degree in a related technical field. In his case it
happened to be mathematics and while he enjoyed the abstractions and mental
gymnastics involved in proving theorems at the end of the day opening up a shell
and writing a Ruby script to demonstrate an edge case of some theorem was far
more satisfying. So after attaining a Masters degree in mathematics he entered the
field of software testing and reliability and hasn't looked back. These days his tools
for quickly accomplishing a task are C# and PowerShell. He works at eSolar as a
Software Test Engineer verifying the proper functionality of software that controls
fields of heliostats at a concentrated solar power plant. The complicated nature of
the software and its high reliability requirements mean that there must be a lot of
automation in the verification and testing process in order to meet tight release
deadlines. As the software runs on Windows the right tool for maintaining the
testing and automation framework for verifying the software is PowerShell because
it integrates seamlessly with all the components that comprise the testing framework.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface 1
Chapter 1: Find What You're Looking for 5

The Show-Command cmdlet 7
Updatable contextual help 11

What help is made of 11
The Save-Help cmdlet 12
The Update-Help cmdlet 13
The Get-Help cmdlet 14

The auto-discovery cmdlet 15
Understanding cmdlet auto-discovery 17
Things to know about auto-discovery 18

Summary 22
Chapter 2: Usability Enhancements 23

The problem with Where-Object and ForEach-Object 24
Fixing the problem with Where-Object 25
Fixing the problem with ForEach-Object 29

Enhancements to tab completion 31
Improvements to Get-ChildItem 34

The problem with Get-ChildItem 35
A better Get-ChildItem 37

Summary 40
Chapter 3: Improved Administration 41

Scheduling jobs 42
Creating a job trigger 44

Viewing scheduled jobs in the Windows Task Scheduler 46
Delegated administration 48

Table of Contents

[ii]

The need for a more robust system 49
Examining PowerShell session configurations 50
Modifying existing session configurations 51

Creating a delegated session configuration 53
Registering new session configurations 53
Connecting to a newly registered session configuration 54

Robust and resilient remote sessions 55
A long running example 55
Using resilient sessions 56
Experimenting with resilient sessions 59

Improved Restart-Computer 61
The enhanced Restart-Computer 61
Installing a product which requires a restart 62
Using the delay parameter 63
Using different communication protocols 63

Summary 64
Chapter 4: Windows Workflow in PowerShell 65

Understanding Windows Workflow 66
Integrating Windows Workflow with PowerShell 68

First steps in workflows 69
Workflow common parameters 72
Workflow as a job 74
Remote execution 75
Custom workflow parameters 76
Scripts in workflows 77
Working between workflows 78

Parallel execution 80
Persisting data in workflows 82

Limitations of PowerShell workflows 83
Variable scope 83
No advanced function blocks 85
Activities that run only on the local machine 85
The cmdlets that have no activity implementation 85
Importing activities into PowerShell 86

Using PowerShell workflows in Visual Studio 90
Adding a Microsoft workflow activity assembly 90
Adding a custom PowerShell workflow to Visual Studio 96

Summary 96
Chapter 5: Using the Common Informational Model 97

Introduction to the CIM IDE 98
Implementing a simple WMI provider 101

Adding a CIM Provider project 103

Table of Contents

[iii]

The implementation details 103
Generating PowerShell metadata 105
Registering a WMI provider 107

Automatically creating provider cmdlets 109
Why new cmdlets to interact with WMI? 110

Differences between the CIM and WMI cmdlets 110
Cmdlet differences between CIM and WMI 111
Registering CIM events 113
Updating CIM instances 114

Exploring the new CIM cmdlets 116
CIM sessions 117
Creating new CIM instances 119
Working with associated classes 119

NanoWBEM 122
Summary 122

Chapter 6: New and Improved PowerShell Hosts 123
Installing the Windows PowerShell Web Access feature 124

Configuring the Windows PowerShell Web Access 127
Authorizing users 127

Accessing the PowerShell Web Access 128
Working with the PowerShell Web Access console 129

Additional input and output 130
Multiline statements 131

Enhancements to the PowerShell ISE 132
Intellisense 132
Snippets 135

Defining our own snippets 136
XML file syntax highlighting 138
Other editor enhancements 138
ISE options 140

List of ISE options 141
Colors 142
ISE add-ons 143

Summary 144
Chapter 7: Windows 8 and Windows Server 2012
Modules and Cmdlets 145

Core modules 146
Invoke-WebRequest 146

Usage examples 146
Invoke-RestMethod 147

Usage examples 147

Table of Contents

[iv]

ConvertTo-Json 147
Usage examples 147

ConvertFrom-Json 148
Usage examples 148

ControlPanelItem 149
Usage examples 149

Rename-Computer 149
Usage examples 150

TypeData 150
Usage examples 150

Unblock-File 151
Usage examples 151

Standard modules 151
NetAdapter module 151

NetAdapter cmdlets 152
NetAdapterBinding 152
NetAdapaterAdvancedProperty 153

SmbShare module 153
SmbShare 154
SmbSession 154
SmbShareAccess 155
SmbOpenFile 155

PrintManagement module 156
Printer 156
PrintJob 157
PrintConfiguration 157

Windows data access control module 158
OdbcDsn 158
OdbcDriver 158

DnsClient module 159
Resolve-DnsName 159
DnsClientCache 160
Get-DnsServerAddress 160
DNSGlobalSettings 161

Storage module 161
Disk 162
Partition 162
Volume 163

Roles and feature based modules 164
Hyper-V module 164

VM 164
VMDvdDrive, VMHardDiskDrive, and VMNetworkAdapter 166
Measure-VM 166
VMHost 167

Active Directory deployment module 168
Install-ADDSForest 169

Table of Contents

[v]

ADDSDomainController 169
Test ADDSDeployment 170

AppX module 170
AppXPackage 171
Get-AppXPackageManifest 172

Other modules 172
Remote Desktop management module 172
BranchCache module 173
Windows Update Services module 173

Summary 174
Index 175

Preface
With PowerShell quickly becoming the de-facto standard for automation, on
the Windows platform, it is becoming a necessity to learn and understand the
language. Microsoft Windows PowerShell 3.0 First Look will ensure that you have a
great overview of the numerous new features and changes found in the most recent
version of the language. Through simple examples and succinct chapters, this book
will quickly bring readers up to speed with need to know information about the
newest version of PowerShell.

What this book covers
Chapter 1, Find what you're looking for, covers the new Show-Command cmdlet,
updatable help and the module auto-discovery feature.

Chapter 2, Usability Enhancements, looks at the enhancements to the Where-Object,
ForEach-Object, Get-ChildItem, and tab expansion.

Chapter 3, Improved Administration, covers improvements to administration
including scheduled jobs, improved remote sessions, and an enhanced
Restart-Computer cmdlet.

Chapter 4, Windows Workflow in PowerShell, examines Windows Workflow and how it
has been integrated into Windows PowerShell.

Chapter 5, Using the Common Informational Model, looks at the Common Informational
Model and the host of new cmdlets that are available to manage Windows and
non-Windows devices.

Preface

[2]

Chapter 6, New and Improved PowerShell Hosts, looks at the new PowerShell Web
Access and the greatly enhanced PowerShell Integrated Scripting Environment.

Chapter 7, Windows 8 and Windows Server 2012 Modules and Cmdlets, looks at some
of the interesting new modules and cmdlets found in Windows 8 and Windows
Server 2012.

What you need for this book
This book requires that you have the Windows Management Framework (WMF)
version 3 installed. WMF version 3 requires that you are running Windows 7,
Windows Server 2008, or Windows Server 2008 R2.

The final chapter in this book requires an installation of Windows 8 or Windows
Server 2012. There are chapters within this book that show the use of Microsoft
Visual Studio 2010 but this is not required to take full advantage of this book.

Who this book is for
This book is intended for IT administrators that are looking to quickly come up to
speed on the new functionality found in PowerShell 3.0. Some PowerShell experience
may be necessary to take full advantage of some of the topics covered in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: The Show-Command is an interesting cmdlet
to add to an until-now-command line-only shell.

Any command-line input or output is written as follows:

PS C:\> Show-Command New-Item

Preface

[3]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: When
clicking on the Run button, the command is executed and output is not displayed
in the user interface, but rather written to the console.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Find What You're Looking for
Windows PowerShell is a very dynamic language. There are many ways to improve
the user experience such as adding new cmdlets (pronounced command-lets) that
expose more functionality in the shell, or by adding new providers that allow users
to traverse the data, just like one would traverse files and folders on a hard drive.
The users can easily add functions to their profiles or load more complex modules
that add a host of new features. As more and more vendors including Microsoft, start
to pick up the pace of PowerShell support for their products, the more difficult it will
be to find and understand all of the new components. Windows Server 2012 alone
offers thousands of new cmdlets for interacting with the operating system. Luckily
PowerShell features, such as the integrated help and the alias system, provide ways
to understand and access cmdlets, and have been an integral part of the language
since its inception. These features can help even the most seasoned PowerShell users
understand and experiment with cmdlets for the first time.

The cmdlets are commands that can have data piped in and out of them. This allows
multiple cmdlets to be chained together to form a pipeline of processing, simplifying
scripts, and making them read more like English language. As an example, we can
select processes based on their memory usage and output their names with a simple
pipeline of the cmdlet. The following command explains this:

PS C:\> Get-Process | Where-Object WorkingSet -gt 100MB | Select-Object
Name

Name

chrome

svchost

Find What You're Looking for

[6]

Simplifying the way users find and use cmdlets has been a major corner stone
of PowerShell from the beginning, but there have been certain areas where
improvement is necessary. The three areas that Microsoft focused on during the
most recent version of PowerShell, have been the user avoidance of the command
line, the contextual help system, and cmdlet discovery.

Often users are accustomed to a Graphical User Interface (GUI) because it offers
contextual clues, steps, and more natural feedback. The command line can seem
primitive and daunting. To help prevent some of this shell-shock, Microsoft
implemented a transitional cmdlet, Show-Command, that displays the required
parameters and help in a GUI rather than on the command line.

The second area that Microsoft has focused on is the cmdlet discovery. In PowerShell
2.0, modules were introduced. The modules allowed developers to create simple
and pluggable bunches of related cmdlets and providers into a single unit that could
be loaded and unloaded at will. These modules are starting to become the standard
that Microsoft itself has used for developing new product or component based
PowerShell support. Although not all their PowerShell support ships as modules, a
large majority does. The problem was that, modules needed to be loaded explicitly
before any of their functionality could be used. As more and more modules are
implemented and installed, it becomes increasingly difficult to find the proper
module and cmdlet. Additionally, it requires two commands instead of one: one to
load the module and one to call the target cmdlet.

The final area is the contextual help system, which was plagued by the fact that it
was static. It only allowed users and vendors to update help when everything else
was updated. This was a headache for both parties.

In this chapter we will see the following:

•	 The new Show-Command cmdlet and how it transitions into PowerShell a
bit easier

•	 The updatable contextual help system which ensures that we are up to date
with the latest versions of contextual help

•	 The cmdlet and module auto-discovery system, which makes working with
all the cmdlets and modules in a system easier

Chapter 1

[7]

The Show-Command cmdlet
Often the command line can seem like an unfamiliar and daunting area of the
operating system, which new users are reluctant to investigate. The lack of a user
interface which can be clicked on often outweighs the benefits that short, quick
commands can offer. In PowerShell 3.0, Microsoft has added a simple cmdlet to aid
in eliminating this stumbling block. This cmdlet is Show-Command.

Running Show-Command without any parameters opens a user interface with a
drop-down list of available modules and a list box full of all the cmdlet, aliases,
drives, and functions available in those modules. The commands in the list will
depend on what is installed on the machine and the list will differ per machine.
This is done as follows:

PS C:\> Show-Command

Find What You're Looking for

[8]

There is a textbox for searching the list available under the Modules drop-down
list. If you select one of the commands, drives, or functions, a new pane will open
at the bottom of the window, as shown in the following screenshot, which shows all
the parameters for the cmdlet and allows you to run, copy, or view the help for a
particular item:

Chapter 1

[9]

You can pass the name of a cmdlet to the Show-Command cmdlet through the
Name parameter as well. In this mode, the Show-Command user interface allows
for input into the named cmdlet. All the parameters and parameter sets are
available for the user to select from and provide input. For this, you can enter
the following command:

PS C:\> Show-Command -Name Get-Process

By clicking on the Copy button, a string of text is copied to the clipboard, which
is the result of the data entered into the user interface. This text could then be
pasted into a script editor or the command line for execution. When clicking on the
Run button, the command is executed and the output is not displayed in the user
interface, but rather written to the console. Additionally, the size of the resulting
window can be adjusted using the Height and Width parameters of the cmdlet.

Another interesting feature of the Show-Command cmdlet is the ? button (shown in
the previous screenshot). This button is only available when the Name parameter is
specified or a cmdlet is selected from the first view shown previously. Clicking on
the button will open a new window with the help for the current command. This is
explained by the following command:

PS C:\> Show-Command New-Item

Find What You're Looking for

[10]

The output is shown in the following screenshot:

Note that the cmdlet Show-Command is blocking the view and
you will not be able to interact with the PowerShell console
while the window is open.

The Show-Command is an interesting cmdlet to add to an until-now-command
line-only shell. The benefit is that it offers a simple visual view of many cmdlets
and the respective help. This can help users overcome the shell-shock, which is
often associated with opening PowerShell for the first time. Additionally, the
cmdlets can be of value to administrators looking to shortcut some of the
unnecessary typing that must be done for the cmdlets with lots of parameters.
Rather than having to type them out, you can now find yourself tabbing through
the Show-Command user interface.

Chapter 1

[11]

Updatable contextual help
For a first-time user to the language, Get-Help is the most important cmdlet in the
bunch (some may argue this is true for all users!). Not only does it offer the syntax
definitions, but also examples, detailed explanations, and links to online resources as
well. This is shown in the following screenshot:

In the previous versions of the language, the PowerShell help was a static resource
that would only be updated during major releases. For example, in PowerShell
2.0, links integrated into the help would point users to the Internet for additional,
possibly updated resources. This required using the Online parameter of the
Get-Help cmdlet, as follows:

PS C:\> Get-Help Get-Process -Online

The use of the Online parameter was cumbersome as it drove the user outside of the
shell and into the default browser. Additionally, any documentation errors could not
be corrected in the local help and could lead users astray. Microsoft has improved
the user experience of the help system in the latest version of PowerShell. Rather
than making it a static resource, the help system has become a dynamic feature,
much like the rest of PowerShell. This allows users to retrieve the most updated
help directly from Microsoft and other developers to ensure the best and the most
reliable information.

What help is made of
To understand how to update the help, it makes sense to understand what the help
is made out of. The help system is comprised of a collection of text- and XML-like
files stored in the PowerShell installation directory or within module directories
themselves. Long-winded topic discussions are stored simply in about_*.txt files
within the PowerShell installation directory. These files are retrieved using Get-Help
and specifying the full name or a distinguishable part of the title of the help topics,
using the following command:

PS C:\> Get-Help –Name about_Modules

Find What You're Looking for

[12]

The same command would work by just specifying modules as the Name parameter
as follows:

PS C:\> Get-Help –Name modules

Help that is directly related to cmdlet is stored within a unique format called
Microsoft Assistance Markup Language (MAML). The entirety of cmdlet help is
formatted into these files; including descriptions, examples, and detailed parameter
explanations. The MAML help files are stored within the module directories
themselves. The help system parses the different pieces of the MAML document,
as you request them using the Get-Help cmdlet.

In the latest version of PowerShell, the help system can now download and install
help from the Internet or from the file system. The improved help system now
takes advantage of a new key that is a part of the module's manifest. This key,
HelpInfoURI, points to the location of the updated help files. Module authors can
specify this URI by using the New-ModuleManifest cmdlet or by editing the PSD1
manifest file for a module.

There are two new cmdlets that have been added to the help system. The
Save-Help cmdlet is capable of downloading help files from the Internet and
storing them packaged as a combination of XML and cabinet (CAB) files. These
files can then be provided to Update-Help for installation. Update-Help is capable
of both downloading help files from the Internet and installing them. It can
consume the files downloaded by Save-Help as well and install them.

The Save-Help cmdlet
The Save-Help cmdlet downloads the help for modules and saves the
modules to the local file system or share. As the cmdlet saves the help to the
$PSHome\Modules directory, if an alternate path is not specified, you will need
to be part of the administrators' group and run an elevated PowerShell command
prompt by right-clicking and selecting Run As Administrator. The Save-Help
cmdlet uses a HelpInfo XML file of a module to gather the correct URL for
downloading the help files. When the help files are downloaded, they will be
organized into a single HelpInfo XML file accompanied by several CAB files, one
for each language. The CAB files contain the actual help documentation. You don't
have to worry about extracting any of the data from the CAB file as the Update-Help
cmdlet will do this for you.

Chapter 1

[13]

The Save-Help cmdlet can specify an alternate path using the LiteralPath or
DestinationPath parameters. The LiteralPath parameter will not expand
wildcards. Note that the path will not be created by this cmdlet. The following
command shows this:

PS C:\> Save-Help –DestinationPath C:\MyHelpDirectory

You can download help for a single module as well. You cannot specify the help for
a single cmdlet. To download help for a single module use the Module parameter
as follows:

PS C:\> Save-Help –Module Microsoft.PowerShell.Core –DestinationPath
C:\MyHelpDirectory

There is a restriction enforced by the Save-Help cmdlet which prevents you from
downloading the help more than once in a 24-hour period. To bypass this you can
use the Force parameter, as shown in the following command:

PS C:\> Save-Help –Module Microsoft.PowerShell.Core –Force –
DestinationPath C:\MyHelpDirectory

The Update-Help cmdlet
The Update-Help cmdlet is responsible for installing help downloaded from
the Internet or local folder or file share. By default, the Update-Help cmdlet will
download files from the Internet and install them if they are out of date. If you run
Update-Help without parameters it will update help for each module loaded into
the current session. You will need to be part of the administrators' group and run
as administrator, to update any of the core PowerShell modules, because they are
stored in the system directory. This will update all currently loaded modules directly
from the Internet if they are out of date. The following command can be used for this:

PS C:\> Update-Help

Alternatively, you can update help from a local folder or file share. The Update-Help
cmdlet expects that these files are in the format that Save-Help creates. You will
need to have both the HelpInfo XML file along with any CAB files in the specified
folder or share. To invoke Update-Help in this way, you can use the LiteralPath or
SourcePath parameters as shown in the following command:

PS C:\> Update-Help –SourcePath C:\MyHelpDirectory

Like the Save-Help cmdlet, the Update-Help cmdlet, by default, only allows you
to download the help once per day. To bypass this you can use the Force parameter
as follows:

PS C:\> Update-Help –Module Microsoft.PowerShell.Core –Force

Find What You're Looking for

[14]

Again, like the Save-Help cmdlet, the Update-Help cmdlet allows you to specify a
particular module and culture when updating help. By default, the cmdlet will use
the current culture. In this example, it would download and install the help for the
Microsoft.PowerShell.Core module for the German culture, as follows:

PS C:\> Update-Help –Module Microsoft.PowerShell.Core –UICulture de-DE

The cmdlet offers a Recurse parameter that will search the SourcePath directory,
recursively, for HelpInfo XML and CAB files using the following commands:

PS C:\> Update-Help –SourcePath \\fileServer01\HelpFiles -Recurse

In addition to accepting strings for module names through the Module parameter,
the cmdlet Update-Help and cmdlet Save-Help will accept PSModuleInfo objects
through the InputObject parameter as well. This parameter accepts pipeline input.
The Get-Module cmdlet returns PSModuleInfo objects. This allows you to use the
two modules in unison and create a pipeline between the two. For example, you
could get all the modules that are available and update them. This is shown in the
following command:

PS C:\> Get-Module –ListAvailable | Update-Help

In the same way, with Save-Help, you could save the help for all modules in a
particular directory, as follows:

PS C:\> Get-Module –ListAvailable | Save-Help –DestinationPath
C:\MyHelpDirectory

The Get-Help cmdlet
The Get-Help cmdlet has been updated with a simple usability feature. Microsoft
added a progress indicator that is now present when searching for help on
a particular cmdlet. Because the number of cmdlets and modules is growing
exponentially, and the cmdlet discovery is expanding beyond the session (as
you'll soon see), this subtle but necessary feature has been added, as shown in the
following screenshot:

Chapter 1

[15]

The auto-discovery cmdlet
Finding cmdlets and functions in PowerShell is very easy. You can simply type
Get-Command to get a list of all the cmdlets and functions available in the current
session. Adding new functions or cmdlets to the session can be done by running
scripts, or even writing your own as you go.

In PowerShell 2.0, the concept of a module was introduced. A module is a packaged
set of cmdlets, aliases, functions, types and other components that can be loaded and
unloaded from a session. Often these modules serve a single purpose, for example
Hyper-V support or Diagnostics. Keep in mind that roles or features may need to
be enabled before accessing particular modules. The Hyper-V module for example
is only available if the Hyper-V role is enabled. To access modules in the current
session you can simply type Get-Module as follows:

PS C:\> Get-Module

ModuleType Name ExportedCommands

---------- ---- ----------------

Manifest Microsoft.PowerShell.Core {Add-History, Add-...

Manifest Microsoft.PowerShell.M... {Add-Computer, Add-...

Manifest Microsoft.PowerShell.S... {ConvertFrom-...

Manifest Microsoft.PowerShell.U... {Add-Member, Add-Type,..

To take the command a step further you can issue it with the ListAvailable
parameter too. This will show all modules that are currently installed in the specified
modules directories within the system, as shown in the following command:

PS C:\> Get-Module –ListAvailable

The Get-Module cmdlet is looking for folders within the directories that contain
modules manifests. Module manifests outline what is contained in and exported
from the module. Notice the previous output the ExportedCommands property
of each record returned by the Get-Module cmdlet. This property shows which
commands are to be exported from the module and thus available to the user in the
session. Module authors are advised to set the CmdletsToExport key in their module
manifests. This ensures that the module will not actually have to be loaded in order
to view which cmdlets are provided by the module. If this key is not populated, the
module may be loaded in order to discover the cmdlets that are exported.

Find What You're Looking for

[16]

By default, the module directories include the user module
path, %userprofile%\Documents\WindowsPowerShell\
Modules, and the system module path, %windir%\
System32\WindowsPowerShell\v1.0\Modules.
These values are stored within the $env:PSModulePath
environment variable.
In the previous versions of PowerShell, you would be
responsible for knowing which module contained the cmdlets
you were attempting to use. You would then have to call the
Import-Module cmdlet followed by the name of the module.
This would make the cmdlet available to you in the command
line. This is no longer the case in PowerShell 3.0.

In the newest version of PowerShell, the cmdlet auto-discovery cmdlet does that
work for you. Simply typing the name of a cmdlet which is available in any module,
imported or not, will execute as expected. For example, the WebAdministration
module contains a Get-Website cmdlet. Note that the web server role needs to be
enabled to gain access to the WebAdministration module.

In PowerShell 2.0, before being able to use Get-Website you would first have to
import the WebAdministration module, using the following commands:

PS C:\>Import-Module WebAdministration

PS C:\> Set-Location IIS:

PS ISS:\>Get-Website –Name "Default Web Site"

There are two pain points associated with the previous interaction. First, the user
must know which module contains the cmdlet they are intending to use. Finding the
cmdlet could be done by calling Get-Module and then parsing the ExportedCmdlets
parameter, as follows:

PS C:\> Get-Module -ListAvailable | Where-Object { $_.ExportedCommands.
Keys -eq "Get-Website" }

The command returns nothing in this case because the WebAdministration
module does not define the ExportedCmdlets key in the module manifest. Instead
it specifies the wildcard character, *, signifying that all cmdlets are exported. Due
to this, we would need to import every module in order to search for the cmdlet.
This could be very time consuming and resource intensive if a system had a lot of
modules installed.

Chapter 1

[17]

The second pain point is the need to make sure a module is currently imported into
a session before calling any cmdlets. This can be a problem when multiple scripts are
chained together. For example, if Script1.ps1 was run first, and it imported module
x, and then Script2.ps1 used cmdlets from module x it would work correctly. If
Script2.ps1 was run by itself it would fail because it did not import module x.

Understanding cmdlet auto-discovery
The auto-discovery cmdlet removes the need to load a module explicitly before
calling cmdlets that it includes. For example, rather than performing the previous
imports you could simply call it Get-Website as follows:

PS C:\>Get-Website

Right before execution of the Get-Website cmdlet, PowerShell imported the module
for us. This is not the only circumstance where a cmdlet module will be automatically
loaded. There are actually two other actions that will implicitly load a module. The
first action is when attempting to load the help for a cmdlet using Get-Help as follows:

PS C:\> Get-Help Get-Website

Again this will load the module right before getting the help for the cmdlet. This is
necessary because the module contains the help information, thus Get-Help requires
that the module be loaded before reading the help. The last circumstance where
a module will be implicitly loaded is when you use the Get-Command cmdlet to
retrieve a CmdletInfo object using following command:

PS C:\> Get-Command Get-Website

Using a Get-Command call with a wildcard character will not load the module into
the current session. The about_Modules help topic explains why. The following
sentence supports this, which can be found at

http://msdn.microsoft.com/en-us/library/windows/desktop/hh847804.aspx.

Get-Command commands that include a wildcard character (*) are considered to be
discovery, not use, and do not import any modules.

It is possible to modify how modules are auto-loaded in your PowerShell session.
You can adjust the value of the PSModuleAutoLoadingPreference variable. The
default value for this variable is All. All signifies that during any of the these
actions the module containing the target cmdlet will be auto-loaded. The other two
values are ModuleQualified and None. ModuleQualified loads modules only when
a command is prefixed by the module name, as follows:

PS C:\> Get-Command "MyModule\MyCommand"

Find What You're Looking for

[18]

In any other circumstance the module will not be loaded. Setting
PSModuleAutoLoadingPreference to None will turn off module auto-loading.

There is one other change that affects when modules are imported. In PowerShell
2.0, modules that relied on other modules, could specify the RequiredModules
property and list the other modules that were required by the module. If the other
modules were not already imported when the target module was being imported, an
error would be shown and the module would not be imported successfully. This has
changed in PowerShell 3.0. Instead of the primary module load failing immediately if
the other modules are not loaded, an attempt to load all the dependent modules will
be made before loading the target module.

This effectively alleviates the two pain points seen in the previous versions of
PowerShell. The cmdlets can be used without having to load their modules. This
reduces script dependencies and saves a bit of typing. In addition, it enables
administrators to search for cmdlets and the help of cmdlets without having to
know the details of where they are stored.

Things to know about auto-discovery
The cmdlet auto-discovery is a great new feature but has a few caveats that need
to be understood when working with the new version of PowerShell. The first thing
to note is that the help system searches the module directories in a specific order.
The local user's module directory is the first to be searched, followed by the system
module directory. This is very important to understand because PowerShell allows
for functions to be overwritten. This means that it is possible to have two separate
modules that contain those cmdlets. For example, if you have two virtual machine
management modules, say HyperVModule and VirtualBoxModule, and they both
have Get-VM cmdlet.

Here is an example of one of the module manifests:

#HyperVModule.psd1 – Module Manifest

@{

ModuleVersion = '1.0'

GUID = '256c636c-7e77-493c-971e-fe16cfe0601c'

Author = 'Adam Driscoll'

CompanyName = 'Get-VM'

Copyright = '2011 Adam Driscoll'

Description = 'Test Hyper-V Module'

PowerShellVersion = '3.0'

#Some fields removed …

Chapter 1

[19]

NestedModules = @('HyperVModule.ps1')

CmdletsToExport = 'Get-VM'

}

As you can see the module will export the cmdlet Get-VM. The CmdletsToExport
property is what the system is evaluating to determine where cmdlets are stored
during auto-discovery. Here is an example of one of the source files:

function Get-VM

{

 Write-Host "HyperVModule:Get-VM"

}

As you can see, we are a defining a function, Get-VM, which simply prints
out the name of the module and the name of the cmdlet. In the case of the
VirtualBoxModule, we have defined a very similar structure, except it will
print out VirtualBoxModule:Get-VM rather than the string presented in the
previous script snippet.

Imagine that the HyperVModule is stored in the local user module directory while
VirtualBoxModule is stored in the system module directory. Typing Get-VM in the
shell will then load the HyperVModule and execute that cmdlet.

Executing the Get-VM on the command line would now result in the following:

PS C:\> Get-VM

HyperVModule:Get-VM

To execute the other version of the cmdlet you will need to first load the
VirtualBoxModule explicitly, and then execute the cmdlet as follows:

PS C:\> Import-Module VirtualBoxModule

PS C:\> Get-VM

VirtualBoxModule:Get-VM

The cmdlet auto-discovery is great when attempting to locate a particular cmdlet,
but as seen previously it behaves differently when there are multiple cmdlets with
one name.

Although this is an issue there are several ways to work around it. Even when both
the cmdlets are loaded, it is still possible to fully qualify the name of the cmdlet we
would like to execute. For example, if we wanted to execute the Get-VM cmdlet of
VirtualBoxModule, we could do the following:

PS C:\> VirtualBoxModule\Get-VM

VirtualBoxModule:Get-VM

Find What You're Looking for

[20]

In addition to using the default fully qualified name, we could use the Prefix
parameter of the Import-Module cmdlet as well. This allows us to change the prefix
for the cmdlet. For example, we could define a new prefix for the VirtualBoxModule
as follows:

PS C:\> Import-Module VirtualBoxModule –Prefix VBM

PS C:\> VBM\Get-VM

VirtualBoxModule:Get-VM

In PowerShell 2.0, this prefix was defined by the module name.
But in PowerShell 3.0 module authors have the option of changing
the prefix by specifying the DefaultCommandPrefix key in the
manifest of the module.

Another problem associated with this circumstance is attempting to find these
cmdlets. Get-Command is not set up to find cmdlets beyond the first one it finds
when there are no wildcards associated with the name. Once it locates the cmdlet it
is looking for, it will simply stop looking and return that cmdlet. So executing the
following will only return the HyperVModule version of Get-VM because it looks in
the user module directory before looking in the system module directory:

PS C:\ Get-Command Get-VM

CommandType Name ModuleName

----------- ---- ----------

Function Get-VM HyperVModule

PS C:\ > Get-Module

ModuleType Name ExportedCommands

---------- ---- ----------------

Manifest HyperVModule Get-VM

Notice that it has loaded the module after calling Get-Command. Although in most
circumstances the Get-Command works in our favor, this time we were attempting to
search for all the Get-VM cmdlets available to us. As you can see, the HyperVModule
is now loaded into our session. In order to find the other cmdlet we need to get a
bit more complex in the way we search the system. The following command will
retrieve all the available modules and filter through each one of their exported
commands, returning only modules that contain a Get-VM cmdlet:

PS C:\ > Get-Module -ListAvailable | Where-Object { $_.ExportedCommands.
ContainsKey('Get-VM') }

Chapter 1

[21]

 Directory: C:\Users\Adam\Documents\WindowsPowerShell\Modules

ModuleType Name ExportedCommands

---------- ---- ----------------

Manifest HyperVModule Get-VM

 Directory: C:\Windows\system32\WindowsPowerShell\v1.0\Modules

ModuleType Name ExportedCommands

---------- ---- ----------------

Manifest VirtualBoxModule Get-VM

The reason the previous cmdlet works is that it does not actually force either of the
modules to load into the session via cmdlet auto-discovery. Instead, internally it
reads the manifest files and searches for cmdlet within those manifests and returns
the corresponding modules. Instead of using such a complicated command it is
possible to once again use the Get-Command cmdlet. Albeit, this example may not
work in every circumstance, it will work for the previous example as follows:

PS C:\> Gt- Command Get-VM*

CommandType Name ModuleName

----------- ---- ----------

Function Get-VM HyperVModule

Function Get-VM VirtualBoxModule

Because we used a wildcard in the call to Get-Command, the system did not use the
auto-discovery cmdlet as explained earlier. The problem with this method is that
it may find cmdlets simply starting with Get-VM in addition to the cmdlets we are
actually searching for.

Another issue associated with cmdlet auto-discovery is that it can mask issues
associated with the modules it is attempting to auto-load. If, for instance, I had
incorrectly typed the NestedModule property in the HyperVModule manifest, I
would receive an error while attempting to load the module with Import-Module,
shown as follows:

#Notice I'm missing a close single quote

CompanyName = 'Get-VM

Find What You're Looking for

[22]

This is what happens when I attempt to load the module explicitly with the
Import-Module cmdlet as follows:

PS C:\Users\Adam> Import-Module HyperVModule

Import-Module : The module manifest 'C:\Users\Adam\Documents\
WindowsPowerShell\Modules\HyperVModule\HyperVModule.psd1'

could not be processed because it is not a valid PowerShell restricted
language file. Please remove the elements that are not permitted by the
restricted language

If I were now to attempt to call the Get-VM cmdlet, I would receive an error. Rather
than continuing on to the next module that contains Get-VM, the VirtualBoxModule,
PowerShell stops processing because of an error in the HyperVModule as follows:

PS C:\ > Get-VM

The term 'Get-VM' is not recognized as the name of a cmdlet, function,
script file, or operable program. Check the spelling of the name, or if a
path was included, verify that the path is correct and try again.

This is important to note for both duplicate cmdlet scenarios and for module
development, as the issue will not be obvious. The cmdlet auto-discovery is a
very helpful feature but understanding the few caveats associated with it are a
fundamental part of using it.

Summary
As seen in this chapter, Microsoft has taken some big steps forward in providing
a better user experience for PowerShell users. We learned that the updatable help
system allowed developers and users the benefit of the most up-to-date examples
and descriptions for all the cmdlets and topics that a module may expose. The
Show-Command cmdlet ensured that users, that may be weary of the command line,
will feel at home with a simple graphical user interface to enter parameter values
and view the help. The improvements to cmdlet discovery ensured that as the list
of modules grow, the users will still be able to easily find and use the cmdlets that
they need to.

In the next chapter we will look at some of the new usability enhancements to some
of the core components common to every PowerShell user.

Usability Enhancements
In the previous chapter we examined what Microsoft has done to make some of the
core features better. In this chapter we will look at some simple, but very important
changes to a few of the usability aspects of PowerShell. First, we will look at the
changes to the Where-Object cmdlet and the ForEach-Object cmdlet. The first
version of these cmdlets worked well but proved confusing for the first time users
and required excessive syntactical noise to be used. Next, we will explore the
changes to the tab completion behavior in PowerShell 3.0 that makes it much easier
to use. Additionally, a bug was fixed that any regular PowerShell user would find
very annoying. Finally, we will investigate the changes to the Get-ChildItem cmdlet
for the file system provider. The latest version adds new dynamic parameters that
make it easier to find the types of files and directories you are looking for with a
terse, self-documenting syntax.

In this chapter we will cover the following:

•	 The changes to the Where-Object and ForEach-Object cmdlets to
improve usability

•	 The new and improved tab expansion
•	 The enhancements to the Get-ChildItem cmdlet for the file system provider

Usability Enhancements

[24]

The problem with Where-Object and
ForEach-Object
The PowerShell pipeline is a very, if not the most, important feature of the language.
Piping from one cmdlet to another offers numerous benefits including removing
unnecessary storage variables and eliminating the need to create loops. Most of
the time cmdlets offer a very robust piping mechanism. Often related cmdlets are
developed in unison so that piping is as effective and fluent as possible.

For example, here is a script that gets the Themes service and starts it. This is an
example of two well paired cmdlets. There is very little coding necessary and the
fluency of the pipeline seems natural:

PS C:\> Get-Service –Name Themes | Start-Service

Expectedly, cmdlets cannot fit every situation. Sometimes the parameter or
parameter set cannot be determined in piping situations. Other times the cmdlets
simply do not offer a good piping or filtering mechanism. As more third-party
vendors become involved in PowerShell, this most likely will become more
common amongst cmdlet developers that may not have the rigorous standards
that Microsoft does.

There are two utility cmdlets that have been available in PowerShell since the
beginning: Where-Object and ForEach-Object. These cmdlets allow the user to
adjust the pipeline between cmdlets. Where-Object can limit the objects returned by
Get cmdlet when they do not offer the filtering mechanism that matches the user's
circumstance. The Where-Object cmdlet filters objects in the pipeline like the SQL
where clause filters records.

For example, here is a script that filters all the Process objects returned by
Get-Process that have a handle count over 1001 and stops them. This is with
the aid of Where-Object:

PS C:\ > Get-process | Where-Object { $_.Handles -gt 1001 } |
Stop-Process

Historically, Where-Object and ForEach-Object both suffered from excessive
syntactical noise as we saw previously. There was no way to shortcut the amount
of typing necessary to execute these cmdlets. The use of a script block, a script
snippet surrounded by curly brackets, required a lot more typing. In an effort to
shorten the syntax, an alias was created for the Where-Object cmdlet that is simply
a question mark. The following example returns all the processes that have started in
the last minute:

PS C:\> Get-Process | ? { $_.StartTime -gt (Get-Date).AddMinutes(-1)}

Chapter 2

[25]

Although this saved some typing it made it a whole lot more confusing.
Additionally, the use of the $_ variable (current object) was unclear to new users.
It can be a very difficult concept to grasp because the variable is not self-descriptive.
There were ways around this issue. For example, using the foreach statement it was
possible to forgo the $_ variable and use a variable that is domain-specific, as shown
in the following commands:

$processes = Get-Process –Name PowerShell

foreach($process in $processes)

{

$processs.Stop()

}

In this script we are getting all the processes named PowerShell and storing them
in the $processes variable. We then are looping through each process and stopping
it. Although the foreach operator statement offers a much more understandable
syntax, it is even worse when it comes to the amount of typing. In the end, it's
necessary to define a variable and introduce braces and parentheses, all to call a
single method on each one. Selecting multiple properties from an object was a bit
easier as the Select-Object cmdlet could do this without the use of a script block
as follows:

PS C:\> Get-Process –Name PowerShell | Select-Object –ExpandProperty ID

This command simply gets all the PowerShell processes and returns a list of the
process ID (PID), values of each, and writes them to the pipeline. This is much
easier than creating a script block to select the properties we want to send to the
pipeline. Although each of these methods offered a reasonable workaround, it is
not the ideal scenario.

Fixing the problem with Where-Object
PowerShell 3.0 fixes the problem with Where-Object and ForEach-Object by
simplifying how they work. Rather than having to deal with the $_ variable and
the script block mechanism, Microsoft added numerous new parameter sets to
Where-Object and a new parameter to ForEach-Object. The more complicated
Where-Object script presented earlier can be now written in a much more
simplified syntax as follows:

PS C:\> Get-Process | Where-Object Handles –GT 1001 | Stop-Process

Usability Enhancements

[26]

The script still returns all the processes that have more than 1001 handles and stops
them (be careful running this script locally! Consider using the WhatIf parameter
to ensure that only the processes you are looking to stop will be stopped.). The
Where-Object no longer needs the braces or the $_ variable. Notice how, like a
well-designed pipeline cmdlet, the command now reads very much like English.
The pipeline is no longer interrupted by an ugly, confusing, and non-descriptive
script block. Utilizing the default Where-Object alias, Where, makes it read even
more like spoken language, as shown in the following command line:

PS C:\> Get-Process | Where Handles –GT 1001 | Stop-Process

To better understand how to use this cmdlet correctly, it is good to examine how
the cmdlet was developed to behave this way. In the original Where-Object cmdlet,
there was a single parameter set, as explained by the following command:

Where-Object [-FilterScript] <scriptblock> [-InputObject <psobject>]
[<CommonParameters>]

A parameter set is a collection of parameters that are intended to
be used together. Often parameters can appear in one parameter
set but not another, while other parameters can appear in both.
This allows cmdlets to adapt to different intents and to expand the
amount of functionality without too much complication.

The original parameter set simply took a collection of objects from the pipeline, or
otherwise, and filtered them based on the script block provided. It is required that
the script block returns a boolean value. Any object matching that boolean logic
would then be written back to the pipeline, as seen in previous examples.

In an effort to simplify the use of the cmdlet, many new parameter and parameter
sets have been added. Each of the new parameters and parameter sets match one of
the PowerShell comparison operators. You can use the following command to get
more information about each one of the comparison operators:

PS C:\> Get-Help about_Comparison_Operators

The comparison operator similarity can be seen in the previous example in which
we were filtering processes by the number of handles that they possess. In that
example we used the –GT (greater than) parameter of the Where-Object cmdlet. This
parameter was designed to look much like its accompanying comparison operator
but in reality are two different things.

As an example, you will see, the following command uses the –GT
comparison operator:

PS C:\> $MyVariable –GT 100

Chapter 2

[27]

In this case, we are using the –GT operator rather than the parameter. There are many
keywords in PowerShell, such as if, else and foreach. Unlike these keywords,
the Where-Object cmdlet exposes parameters that have the same name as their
related comparison operator. It is quite an ingenious way to deal with the problems
with Where-Object. Rather than overcomplicating the already confusing cmdlets,
Microsoft reused the same syntactical construct in a completely different way. This
allows scripts to become much more readable and easier to understand for novices
and experts alike.

The following is a table of the Where-Object parameter sets and parameters used
for filtering pipelined objects. The following list of parameters can be located in the
contextual help system for the Where-Object cmdlet:

Parameter set Parameter
EqualSet EQ

ScriptBlockSet ScriptBlock

CaseSensitiveGreaterThanSet CGT

CaseSensitiveNotEqualSet GNE

LessThanSet LT

CaseSensitiveEqualSet CEQ

NotEqualSet NE

GreaterThanSet GT

CaseSensitiveLessThanSet CLT

GreaterOrEqualSet GE

CaseSensitiveGreaterOrEqualSet CGE

LessOrEqualSet LE

CaseSensitiveLessOrEqualSet CLE

LikeSet Like

CaseSensitiveLikeSet CLike

NotLikeSet NotLike

CaseSensitiveNotLikeSet CNotLike

MatchSet Match

CaseSensitiveMatchSet CMatch

NotMatchSet NotMatch

CaseSensitiveNotMatchSet CNotMatch

ContainsSet Contains

CaseSensitiveContainsSet CContains

NotContainsSet NotContains

CaseSensitiveNotContainsSet CNotContains

InSet In

Usability Enhancements

[28]

Parameter set Parameter
CaseSensitiveInSet CIn

NotInSet NotIn

CaseSensitiveNotInSet CNotIn

IsSet Is

IsNotSet IsNot

Notice that each of these items is in its own parameter set so they cannot be specified
together. That makes it really easy for the cmdlet to determine what we are trying to
accomplish. In addition, notice that there are no –AND or –OR parameters, so complex
queries will still need to be done (the old way) within a script block parameter set.
When utilizing this cmdlet with one of the comparison operator parameters (all
parameters with exception to the ScriptBlock), you are required to provide a
left-hand and right-hand argument for the comparison. So if you are providing
a list of ProcessInfo objects, for example returned by Get-Process, you must
specify one of the properties on that object for comparison, as shown in the
following command:

PS C:\> Get-Process | Where-Object Id –EQ 1000

If any of these properties are not provided, an error will be shown as follows:

PS C:\> Get-Process | Where-Object Name -EQ

Where-Object : The specified operator requires both the -Property and
-Value parameters. Supply both parameters and

retry.

Additionally you cannot specify properties of the properties. Unfortunately this will
not result in an error. Instead, the query will simply return $null. The following
command explains this:

PS C:\> Get-Process | Where-Object StartTime.DayOfWeek –EQ Thursday

The same thing will happen when you attempt to query a property that does not
exist on the object you are filtering through, as follows:

PS C:\> Get-Process | Where-Object MyProperty –EQ $true

This may be a stumbling point for some. From first glance, it does appear that no
objects are matching the specified filtering criteria. If you look at it literally, none of
the objects are matching the criteria, but not due to them failing the query, but rather
to them not containing the specified property.

Chapter 2

[29]

Fixing the problem with ForEach-Object
The ForEach-Object has got a much simpler treatment but still reaps the benefits of
simplicity. In PowerShell 2.0 there were two ways to gather the properties of pipeline
objects. The first and most common way of accomplishing this would be to use the
Select-Object cmdlet as follows:

PS C:\> Get-Service | Select-Object DisplayName,Status

DisplayName Status

----------- ------

Application Experience Stopped

Application Layer Gateway Service Stopped

Windows All User Install Agent Stopped

Application Identity Stopped

Application Information Running

Although less common, this can be done by using the ForEach-Object cmdlet as
well, as follows:

PS C:\> Get-Service | ForEach-Object { @{DisplayName=$_.
DisplayName;Status=$_.Status} }

Name Value

---- -----

DisplayName Application Experience

Status Running

DisplayName Application Layer Gateway Service

Status Stopped

For obvious reasons, in this circumstance, using the Select-Object cmdlet
would be the better mechanism. The output from ForEach-Object is not as nicely
formatted and takes much more typing. The one benefit that ForEach-Object has
over Select-Object is that it can do anything within the script block. Typically,
when a method needs to be called rather than a property, it is necessary to use the
ForEach-Object script block as follows:

PS C:\> Get-Service Hyper* | ForEach-Object { $_.Pause() }

Usability Enhancements

[30]

The problem with this ForEach-Object call is the excessive overhead of the
syntactical components. From a usability perspective, we are attempting to get
each service that starts with Hyper and call the Pause method on them. The
parenthesis, $_ variable and script block braces are confusing and pretty unnecessary
for such a simple command. In the newest version of PowerShell, Microsoft made it
much easier to achieve what we are trying to do. The new syntax allows the user to
simply specify the name of a method that they wish to call on the pipelined objects
as follows:

PS C:\> Get-Service Hyper* | ForEach-Object –MemberName Pause

Much like the Where-Object syntax presented earlier, the ForEach-Object now can
read much more like the English language. By utilizing the default ForEach-Object
alias foreach, you can see this as follows:

PS C:\> Get-Service Hyper* | foreach Pause

Note that the member name is case insensitive so specifying
"Pause" or "pause" would yield the same result.

The ForEach-Object is not limited to only methods without parameters. There is a
new ArgumentList parameter as well. This allows you to provide the arguments of
a method as an array of values. Each value must either be of the expected type or be
convertible to the expected type. For example the String class has a method Insert
as follows:

PS C:\> "AString" | Get-Member Insert

 TypeName: System.String

Name MemberType Definition

---- ---------- ----------

Insert Method string Insert(int startIndex, string value)

Piping an array of strings to the ForEach-Object cmdlet, specifying the Index
method of String class and providing a list of arguments could yield this effect
as follows:

PS C:\> "a Bird!","a Plane!","Superman!" | ForEach-Object Insert
-ArgumentList 0,"It's "

It's a Bird!

It's a Plane!

It's Superman!

Chapter 2

[31]

Just as with the Where-Object cmdlet, specifying a property of a property is
not supported by this cmdlet and will fail, returning $null as the following
command shows:

PS C:\> Get-Service Hyper* | ForEach-Object MachineName.Length

Enhancements to tab completion
Tab completion is the feature that allows you to begin typing a command,
parameter, or paths, press the Tab key and have the PowerShell engine recommend
possible matches to complete what you are typing. This saves thousands of key
strokes, for a typical administrator a day. It can be helpful for discovery purposes
as well, for example, when attempting to determine the contents of directories or
finding related cmdlets.

In PowerShell 3.0, Microsoft enhanced the experience and fixed an issue that caused
the most administrator grief. The annoying issue that was fixed is referred to as
midline tabbing. If the user were to start typing a command, or possibly copy the
command into a command prompt and move the cursor to the middle of the line,
the command prompt would delete anything after the completed parameter.

Take into consideration the following command line:

PS C:\> Start-job -ScriptBlock { Get-WmiObject -Class Win32_Process }

This command will start a job that will return all instances of the Win32_Process
WMI class. Now, let's assume that we weren't satisfied with an unnamed job and
we wanted to add the name parameter to the call, but we wanted it to come before
the ScriptBlock parameter for better readability. If we began typing the parameter,
pressed the Tab key (as denoted by the <tab> syntax in the following command)
the command line would have deleted the rest of the line, after the tab completed
parameter:

PS C:\> Start-job –N<tab> -ScriptBlock { Get-WmiObject -Class
Win32_Process }

The previous command would result in the following in PowerShell 2.0:

PS C:\> Start-job –Name

This can be quite annoying and time consuming as we would have to write the entire
command over again. Doing the same operation in PowerShell 3.0 works as you
would expect, resulting in the following:

PS C:\> Start-job –Name -ScriptBlock { Get-WmiObject -Class Win32_Process
}

Usability Enhancements

[32]

This simple usability improvement was much needed. The same tab completion
behavior is available for the nested script block found in our Start-Job
command line call in this example. For example, adding a computer name to the
Get-WMIObject call before the Class parameter does not result in the deletion of the
rest of the command line as follows:

PS C:\> Start-job –Name -ScriptBlock { Get-WmiObject –Co<tab> -Class
Win32_Process }

The earlier command line results in the following:

PS C:\> Start-job –Name -ScriptBlock { Get-WmiObject –ComputerName -Class
Win32_Process }

In PowerShell 2.0 it was possible to customize the tab completion behavior. You
could simply override the default function TabExpansion with your own version.
In PowerShell 3.0 there is no longer a default TabExpansion function but rather a
default TabExpansion2 function. We can see this by calling the following command:

PS C:\> Get-Command TabExpansion*

CommandType Name

---------- ----

Function TabExpansion2

It is still possible to override the tab completion behavior through the use of the
original TabExpansion function, rather than overriding the new TabExpansion2
function. PowerShell will call the custom, user-defined TabExpansion function if it
exists in the current session. The tab completion function needs to return an array of
possible values or $null as follows:

PS C:\> function TabExpansion { "Get-ChildItem" }

This tab completion function is a bad idea because all tab expansion will result in the
cmdlet Get-ChildItem written to the command line but it demonstrates how easy
it is to create our own tab completion behavior. Using our new, poorly designed tab
completion function we could begin typing a set command as follows:

PS C:\> Set<tab>

This would result in the following being written to the command line:

PS C:\> Get-ChildItem

Chapter 2

[33]

Not the most useful tab expansion behavior! To remove our custom tab completion
we can use the function provider that comes built into PowerShell. The command
sequence will reset the tab completion behavior back to before we started. The
following command shows this:

PS C:\> Remove-Item function:\TabExpansion

It is possible to remove the pre-defined TabExpansion2 function using the same
method, but this will leave us with no tab completion at all. In addition to the
enhancements for midline tabbing the core modules now support better completion
of parameter values, even when no parameters are specified. Previously, for a cmdlet
such as Stop-Process, you would have to type out the name of a running process
completely before sending it in as a parameter value as follows:

PS C:\> Stop-Process Notepad

In PowerShell 3.0, many of the core cmdlets support parameter value completion.
You could now type the following:

PS C:\> Stop-Process N<tab>

This would result in the tab completion system returning back a process starting
with an N as we press the Tab key. If Notepad was the only running process, or other
processes starting with N fell after it alphabetically, the following would result:

PS C:\> Stop-Process Notepad

This is a really handy tool to have when we know what we are trying to achieve
on the command line and want to save a boat load of typing. The cmdlets that do
support it can support the feature on multiple properties. For instance, the Get-Job
cmdlet supports both Id and Name parameter value expansion. Some other cmdlets
that support this type of expansion include Get-EventLog for log names and Get-
Service for service names as follows:

PS C:\ > start-job -Name test -ScriptBlock { Get-Process }

Id Name State HasMoreData Location

-- ---- ----- ----------- --------

2 test Running True localhost

PS C:\> Get-Job <tab>

This would yield the following:

PS C:\> Get-Job 2

Usability Enhancements

[34]

The reason the Id is used in the previous circumstance is that it is marked as position
zero. This information can be located in the help for the cmdlet. If we were to specify
the Name parameter the name would then be expanded as follows:

PS C:\> Get-Job –Name <tab>

PS C:\> Get-Job –Name test

The final enhancement to tab completion is the ability to tab-expand enumerated
values for the parameters. Along the same lines of the previous parameter expansion,
this type of expansion happens for the values of cmdlet parameters. In this case
though it will work on more than just the core cmdlet. Any cmdlet parameter that
exposes a set enumeration type, for instance ExecutionPolicy, will benefit from
this, as shown in following command:

PS C:\> Set-ExecutionPolicy –ExecutionPolicy <tab>

PS C:\> Set-ExecutionPolicy –ExecutionPolicy AllSigned

Pressing the Tab key again, in this scenario, will cycle through the possible values,
just as Get-Process or Stop-Service would do. Script authors can provide this
feature by using the ValidateSet validation attribute. This attribute ensures
that only certain values can be provided to a parameter. The tab expansion will
enumerate these values as well.

Improvements to Get-ChildItem
Get-ChildItem is a great cmdlet because it traverses multiple providers. For
instance, it will work with both the file system and the registry provider. Using
it with the file system provider, will return files and directories from the current
location as follows:

PS C:\> Get-ChildItem

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 12/28/2009 9:40 PM Backup

d---- 11/6/2010 1:45 PM Builds

d---- 9/18/2010 9:42 AM Development

Chapter 2

[35]

Running the same cmdlet within the context of the registry will have vastly different
results as follows:

PS HKLM:\software> Get-ChildItem

 Hive: HKEY_LOCAL_MACHINE\software

Name Property

---- --------

7-Zip Path : C:\Program Files\7-Zip\

AGEIA Technologies PhysX Version : 9110621

 PhysX BuildCL : 1

 HwSelection : GPU

 PhysXCore Path : C:\Program Files (x86)\
NVIDIA Co…

ASUS

Atheros

The goal of the cmdlet is to return the children of the current item or items
specified by the Path or LiteralPath parameters. Depending on the provider, this
item and children mean different things. The Get-ChildItem, along with other
provider-based cmdlets, can expose new parameters based on the current provider
context. In PowerShell 3.0, the file system provider has added several useful
parameters to the Get-ChildItem cmdlet to make it easier to search for files holding
particular attributes.

The problem with Get-ChildItem
To understand the need for something like this, it is a beneficial exercise to see what
it took in PowerShell 2.0 to look for files or directories that contain only particular
attributes. First, let's see how to return only files in a particular directory as follows:

PS C:\> Get-ChildItem | Where-Object { -not $_.PSIsContainer }

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 3/1/2010 11:37 PM 40054 temp.jpg

-a--- 6/29/2010 6:32 PM 10 testScript.ps1

PowerShell's extensible type system added the PSIsContainer NoteProperty to the
object type, FileInfo and DirectoryInfo, returned by the Get-ChildItem cmdlet.

Usability Enhancements

[36]

We then use the Where-Object cmdlet to find all items that are not containers. This
is a lot of typing for a seemingly common and simple task. To retrieve files that
match a particular attribute set is even more complex:

PS C:\> Get-ChildItem -Force | Where-Object { -not $_.PSIsContainer -and
$_.Attributes -band [IO.FileAttributes]::Archive }

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a-hs 12/11/2011 10:10 AM 3220037632 hiberfil.sys

-a-hs 12/11/2011 10:10 AM 4293386240 pagefile.sys

-a--- 3/1/2010 11:37 PM 40054 temp.jpg

-a--- 6/29/2010 6:32 PM 10 testScript.ps1

This command returns all child items of the C:\ path and filters them by not being a
container and by containing the attribute Archive. The use of the Force parameter
instructs Get-ChildItem to return hidden files. This is a complex command to say
the least! This is especially confusing for users transitioning from the Window's
command prompt where the dir command could take care of this much easier, as
shown in the following command:

C:\>dir /a:a *.*

 Volume in drive C has no label.

 Volume Serial Number is B43D-0A38

 Directory of C:\

12/11/2011 10:10 AM 3,220,037,632 hiberfil.sys

12/11/2011 10:10 AM 4,293,386,240 pagefile.sys

03/01/2010 11:37 PM 40,054 temp.jpg

06/29/2010 05:32 PM 10 testScript.ps1

 4 File(s) 7,513,463,936 bytes

 0 Dir(s) 209,774,366,720 bytes free

Now that we have an understanding of the problem with the previous version
of Get-ChildItem, let's look at the new version to see how it improves the user
experience and changes the grade of the extremely steep learning curve.

Chapter 2

[37]

A better Get-ChildItem
If you look at the syntax definition for the Get-ChildItem cmdlet we will see all the
new parameters that are available to us as follows:

Get-ChildItem [[-Path] <string[]>] [[-Filter] <string>] [-Include
<string[]>] [-Exclude <string[]>] [-Recurse]

[-Force] [-Name] [-UseTransaction] [-Attributes <FlagsExpression[FileAttr
ibutes]>] [-Directory] [-File] [-Hidden]

[-ReadOnly] [-System] [<CommonParameters>]

Get-ChildItem [[-Filter] <string>] -LiteralPath <string[]> [-Include
<string[]>] [-Exclude <string[]>] [-Recurse]

[-Force] [-Name] [-UseTransaction] [-Attributes <FlagsExpression[FileAttr
ibutes]>] [-Directory] [-File] [-Hidden]

[-ReadOnly] [-System] [<CommonParameters>]

These additional parameters can be used to select files and directories that match
specified attribute criteria. For example, if we wanted to select all the files in the root
C drive we could do the following:

PS C:\> Get-ChildItem -File

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 3/1/2010 11:37 PM 40054 temp.jpg

-a--- 6/29/2010 6:32 PM 10 testScript.ps1

Notice that only files were selected within the C drive. These parameters are not
mutually exclusive and can be specified together. If we were to add on the Hidden
parameter we would see the following:

PS C:\> Get-ChildItem -File -Hidden

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a-hs 12/8/2011 7:37 PM 3220037632 hiberfil.sys

-a-hs 12/8/2011 7:37 PM 4293386240 pagefile.sys

Usability Enhancements

[38]

As you can see, only files that are hidden were returned. This is very useful as it lets
us easily specify, whether our child item is a file and whether it is hidden or even a
system file as well. Taking it a step further, assume that we may want to find both
hidden and visible files. Using or omitting the Hidden parameter will not work
because we want both file types. In this circumstance we will want to use the new
Attributes parameter. This parameter allows us to specify a formatted special
string that enables us to filter files and directories based on attributes in a more
complex manner. If we wanted to achieve the result of both hidden and unhidden
files, we would do the following:

PS C:\> Get-ChildItem -Attribute !Directory+Hidden,!Directory

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a-hs 12/8/2011 7:37 PM 3220037632 hiberfil.sys

-a-hs 12/8/2011 7:37 PM 4293386240 pagefile.sys

-a--- 3/1/2010 11:37 PM 40054 temp.jpg

-a--- 6/29/2010 6:32 PM 10 testScript.ps1

In this command, we filtered all the child items that were not directories and hidden,
and then again by objects that were not directories. This provided us with both
hidden and unhidden files in the C drive. The Attributes parameter uses several
special characters to denote different parts of the filter. The special operators are
as follows:

•	 !: This is the NOT operator. Inserting it before a particular value specifies that
we do not want that particular type

•	 +: This is the AND operator. Is specifies that we want the latter flag to be
honored as well as the former

•	 ,: This is the OR operator. It allows us to specify filters where if the child item
matches the latter flag or the former flag, it will be returned as a match

Chapter 2

[39]

In plain English, the filter we specified (!Directory+Hidden,!Directory) reads:
Not a directory which is hidden or not a directory. As there are only two types of
entities within a files system, files, or directories, the English could be simplified to
read: hidden and unhidden files. Thus, all files, hidden or not, will be returned after
the command. The filtering syntax of the Attributes parameter supports more
attributes than the ones specified previously. It supports all values of the System.
IO.FileAttributes enumeration. These values are as follows:

•	 ReadOnly

•	 Hidden

•	 System

•	 Directory

•	 Archive

•	 Device

•	 Normal

•	 Temporary

•	 SparseFile

•	 ReparsePoint

•	 Compressed

•	 Offline

•	 NotContentIndexed

•	 Encrypted

Several of the attributes support a short hand alias too. If we were to use one of
the default aliases for Get-ChildItem, dir, along with the short hand alias for the
attributes, we could have a very terse command. The following example returns
those files as the previous example in much shorter syntax:

PS C:\> dir -af

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 3/1/2010 11:37 PM 40054 temp.jpg

-a--- 6/29/2010 6:32 PM 10 testScript.ps1

Usability Enhancements

[40]

Summary
We learned that Microsoft has spent some time enhancing a few of the key cmdlets
and features to be easier to use and easier to understand. Both novice and advanced
users alike will benefit from the multitude of changes. The changes to Where-Object
and ForEach-Object will have a huge impact on how scripts are written and the
command line used. The elimination of the need to use the often confusing, and
sometimes buggy, $_ variable make working with the cmdlets less of a chore and
make it read much more like a spoken language.

The changes to tab completion will no doubt make many long-time PowerShell users
happy. The simple fix to midline tabbing may seem like a trivial fix to new users
but having lost many command lines to midline tabbing in the past, existing users
will enjoy the change. In addition the ability to discover enumeration values simply
through tab completion will make writing scripts much easier.

Finally the changes to the Get-ChildItem cmdlet for the file system provider will
make working with the file system that much easier. Short and effective commands
can now accomplish very powerful queries and locate exactly what files or
directories you are looking for.

In the next chapter we will look at how PowerShell 3.0 improves administration
through features such as scheduled jobs and better remote sessions.

Improved Administration
PowerShell has always been about administration. From the different provider
systems to the numerous modules, the system is a Windows administrator's
dream. Even the first version was miles ahead of VB script. The rate of community
acceptance alone is starting to prove that PowerShell is the de facto standard for
administrators. The two previous versions simplified and exposed many integration
points for administrators to easily automate their environments. With the power of
.NET hiding behind it, PowerShell allows an everyday administrator to develop their
own solutions without having to involve a developer.

With the third version of PowerShell, Microsoft weighed some of the feedback it
received from the community and further enhanced the administrators' experience.
We'll see how PowerShell is taking a step forward in several areas that will
undoubtedly offer even more flexibility to the system.

In this chapter we will cover the following:

•	 Working with scheduled jobs
•	 Delegated administration
•	 Robust and resilient sessions
•	 Changes to the Restart-Computer cmdlet

Improved Administration

[42]

Scheduling jobs
PowerShell 2.0 introduced the concept of a job. A job is a unit of work which can be
run independently of what is going with the command line or the rest of the script.
This allows for simultaneous units of work to run at the same time. Many jobs can
be scheduled; all completing work in the background while either the command line
continues to function or the script continues to run. This was a huge improvement
over what Windows administrators had at their fingertips in the past. Rather than
having to wait for a single unit of work to complete, we could trigger numerous
actions at once. This saved time and allowed the administrator to work on something
else. Additionally, jobs could be run remotely, spanning the entire infrastructure.

Rather than the concept of threads typically found in full-fledged programming
languages, jobs were designed to be easy to understand and work with. Instead
of having to deal with the implementation details of an independent unit of work,
administrators can just worry about getting the job done in the simplest most
effective way possible.

More often than not, an administrator will author a script with the goal of re-using
that script later. There would be no reason to write a script if this was not the case.
Imagine cleaning out contract worker accounts from Active Directory or finding
mailboxes of Exchange users that are reaching their quota. These types of actions
typically require more than a single command and typically require a full script to be
written. Not only will scripts like these be repeated, they will need to be repeated on
a regular basis. Before the current version of PowerShell, scripts such as this could be
scheduled. The Windows Task Scheduler is a handy tool which can be used to run
particular actions on a schedule, so they do not need to be done by hand.

In PowerShell 2.0 it was possible to run these scripts using the task scheduled with
a little bit of finesse. It is possible to schedule the execution of a script using the
PowerShell executable using the following command:

powershell.exe –File C:\CleanOldUsers.ps1' "

Chapter 3

[43]

This command could be added to the Windows Task Scheduler as a basic task. Using
the task wizard, we could set a schedule, such as daily or weekly at 1:00 a.m., to run
the task. This is much better than us having to run the task by hand at 1:00 a.m. This
is shown in the following screenshot:

Although this was a fine solution, Microsoft took this concept and baked it right
into PowerShell 3.0. Rather than having to manually add the task via the Windows
Task Scheduler, cmdlets have been developed to take care of this right at the
command line.

Improved Administration

[44]

Creating a job trigger
The first step in scheduling a new job is to create an object that defines the schedule
upon which the job will start. This is known as the job trigger as well. The New-
JobTrigger cmdlet creates a ScheduledJobTrigger job that then can be passed to
the Register-ScheduledJob cmdlet. If we wanted to use our previous example, we
could setup a job trigger for 1:00 a.m. daily as follows:

PS C:\> New-JobTrigger -At 1:00AM -Daily

Id Frequency Time DaysOfWeek

-- --------- ---- ----------

0 Daily 12/14/2011 1:00:00 AM

Notice that our newly created object is set up for the current date. This is when the
job will first start. It will then be triggered daily at 1:00 a.m. In addition to scheduling
jobs daily, it is possible to schedule jobs weekly or just once. This can be done with
the Weekly or Once parameters. Once, Daily, and Weekly all fall into their own
parameter set so they cannot be specified together. To create a schedule of jobs, that
requires more than one job trigger, simply run New-JobTrigger more than once,
creating more than one object.

The New-JobTrigger cmdlet requires that the At parameter be specified. The At
parameter accepts a DateTime object. Any valid date and time string will correctly
format into a DateTime object. In the following examples, the At parameter takes
the values on the left-hand side. The results of these values are explained on the
right-hand side:

1:00 PM: Job starts today at 1:00 PM

1/12/12: Job starts January 1, 2012 at 12:00 AM

1/12/12 1:00 PM: Job starts January 1, 2012 at 1:00 PM

To offset jobs slightly we can even specify the RandomDelay parameter. This
parameter accepts a TimeSpan object. A TimeSpan object is, as it sounds, a span of
time. Specifying this parameter causes the job to randomly trigger from the time
specified by the At parameter plus the RandomDelay parameter as follows:

PS C:\> New-JobTrigger -Daily -At 1:00PM -RandomDelay (New-TimeSpan
-Minutes 1)

This example will cause the job to be triggered daily, sometime between 1:00 p.m.
and 1:01 p.m. This allows for many jobs to start around 1:00 p.m. without having
them all start at exactly 1:00 p.m., possibly causing performance or network issues.

Chapter 3

[45]

To make the New-JobTrigger cmdlet useful, it is necessary to pass the result of the
cmdlet to the Register-ScheduledJob cmdlet. This is most easily done by utilizing
a variable as follows:

PS C:\ > $DailyTrigger = New-JobTrigger -At 1:00AM –Daily

The $DailyTrigger variable can now be passed to the Register-ScheduledJob
cmdlet in order to schedule our job using following command:

PS C:\ > Register-ScheduledJob -Name RestartFaultyService -ScriptBlock {
Restart-Service FaultyService }

-Trigger $DailyTrigger

This produces the output shown in screenshot:

The same scheduling can be done by the following two methods. In this scheduled
job, we have set up a script block which runs each day at 1:00 a.m. Its goal is to
restart a service which does not work as expected. Notice the braces around the
Triggers property. This is because the Register-ScheduledJob cmdlet accepts
multiple triggers for an individual scheduled job.

In the first method, we could add additional triggers that would cause this particular
job to trigger. If we run the Get-ScheduledJob cmdlet, our newly created job will be
returned using the following command:

PS C:\ > Get-ScheduledJob

In the second method, the Get-ScheduledJob cmdlet accepts both name and ID as
input, so that only particular jobs are returned as follows:

PS C:\ > Get-ScheduledJob -Name RestartFaultyService

Improved Administration

[46]

Viewing scheduled jobs in the Windows
Task Scheduler
In addition to finding the job using the Get-SchedueldJob cmdlet, we can look in
the Windows Task Scheduler window to see that our job has been created there as
well. This is shown in the following screenshot:

All scheduled PowerShell jobs can be found under the path
Microsoft\Windows\PowerShell\ScheduledJobs.

Upon inspecting what comprises the scheduled task we can see that it is merely
calling PowerShell with a few special arguments. This is very similar to the way
which we would have to set up a scheduled job in PowerShell 2.0, except it utilizes
a new module, the PSScheduledJob module, to take care of all the execution and
state management for us. Refer to the following commands:

-NoLogo -NonInteractive -WindowStyle Hidden -Command "Import-Module
PSScheduledJob; $jobDef = [Microsoft.PowerShell.ScheduledJob.Schedule
dJobDefinition]::LoadFromStore('RestartFaultyService', 'C:\Users\Adam\
AppData\Local\Windows\PowerShell\ScheduledJobs'); $jobDef.Run()"

Chapter 3

[47]

If we were to navigate to the path found in these arguments, we will find an XML
file that is a serialized version of the ScheduledJobDefinition object. This object
contains all the information necessary for defining the job. This is how the job is
stored for future reference. Additionally we find an Output folder that, whenever
the job runs, contains the result of the said job.

This is really just the internals of the scheduled job. It is not required to directly
interact with the data found in this folder. To interpret this information, we can use
the pre-existing job cmdlets such as Get-Job and Receive-Job. The Get-Job cmdlet
will return the completed or running scheduled jobs as follows:

PS C:\ > Get-Job

This will create the following output:

Just as with an in-session job, we can receive the result of the specified job. This
command reads the results of the scheduled job from the Output folder and writes
it to the console for us to view as follows:

PS C:\ > Receive-Job 2

In this case, I really did not have a FaultyService running on my machine so the
job failed with the error message, as shown in the following screenshot. This makes
evaluating whether or not a job was completed much easier!

Just as with the Windows Task Scheduler, it is possible to disable jobs using the
command line. This can be accomplished using the Disable-ScheduledJob cmdlet.
Passing in the name or ID of the job will disable it, as shown in the following command:

PS C:\> Disable-ScheduledJob –Name RestartFaultyService

If we want to re-enable the job we just use the Enable-ScheduledJob cmdlet
as follows:

PS C:\> Enable-ScheduledJob –Name RestartFaultyService

When we no longer need a job we can remove it with the
Unregister-ScheduledJob cmdlet as follows:

PS C:\> Unregister-ScheduledJob –Name RestartFaultyService

Improved Administration

[48]

This will remove the job from both the Windows Task Scheduler and the file system,
as shown earlier.

Working with scheduled jobs is as easy as working with jobs themselves. The
seamless integration between the regular and scheduled jobs makes configuring
running and monitoring them nearly identical. Additionally, as the Windows Task
Scheduler is used to schedule and execute the jobs, there is no additional overhead
incurred by the new functionality.

Delegated administration
Authentication and permissions are vital when using any type of computer
system. Identity management and delegation is becoming an even bigger hurdle
to overcome in the age of globally distributed systems. In Windows, permissions
and authentication are typically done with access control lists and user credentials.
Users are authenticated based on a user name, password, and given particular rights
based on that account and which groups it is a part of. Just like everything else in
Windows, PowerShell plays by the same rules. If a user does not have access to a
particular file or folder, PowerShell will show an access denied error. In Microsoft
operating systems such as Vista and beyond, user account control was added
to ensure that the user could not be spoofed into providing control to malicious
software, when it attempted to do something that may cause system instability.
Registry access for example, requires that a PowerShell prompt be elevated by the
Run As Administrator command. You may have encountered this when attempting
to enable remoting via the Enable-PSRemoting cmdlet as follows:

PS C:\> Enable-PSRemoting

Enable-PSRemoting : Access is denied. To run this cmdlet, start Windows
PowerShell with the "Run as administrator"

option.

The cmdlet ensures that the current session is elevated enough to access the correct
registry key when enabling this feature. Locally, permissions are pretty well defined.
Local users and groups are easily queried and sets of permissions are applied.
Domain systems, such as Active Directory, provide distributed administration
amongst a trusted set of computers or other authenticating end points. This is
evident in cmdlets that accept the Credential parameter such as Enter-PSSession.
The following command explains this:

PS C:\> Enter-PSSession –ComputerName driscoll-host –Credential
ard\adriscoll

Chapter 3

[49]

My credentials have traversed the computer system, and have been used to
authenticate me against the target system. Now that we are in the target system, we
can use the handy whoami.exe application that comes pre-installed on Windows 7
systems as follows:

[driscoll-host]: PS C:\> whoami

ard\adriscoll

The application simply returns the user name of the person who has executed
the command. As you can see that my username comes back, as the user I have
authenticated against the target system. This is expected behavior and ensures that
the permissions that apply to the user throughout the domain apply on the target
system as well.

The need for a more robust system
Although this configuration is ideal for most use cases, it is sometimes necessary
to allow a user more control than they would typically be allowed. For example,
permissions could be granted to reset users' passwords without actually having
the privileges on those user accounts. Sometimes this requires privileges above
and beyond those which are granted by default. Connecting to the driscoll-host
machine with the adriscoll user may not provide all the necessary permissions
required to, for example access the registry. In PowerShell 2.0, the user that
Enter-PSSession, or related remoting cmdlets, would run as would always
be the user that was authenticated via the Credential parameter.

Providing additional permissions may require that the user authenticate as a
different user all together. This requires that the user know the credentials for that
secondary login. Microsoft has added an interesting feature to the third version of
the Windows Remote Management (WinRM), system to allow users to change
which user a remote session is running under. This feature is called delegated
administration. It is the ability to run a remote PowerShell session as a different
user without knowing the credentials for that user. To understand how this works
in PowerShell 3.0, it is necessary to understand how PowerShell session
configurations work.

Improved Administration

[50]

Examining PowerShell session configurations
PowerShell remoting is built upon WinRM to provide remote access to machines
using the Enter-PSSession and Invoke-Command cmdlets. Whenever a user
connects to a remote machine using one of these cmdlets, the WinRM service creates
a new instance of a process to host the session. The cmdlets and objects are serialized
back and forth to the remote computer. From a user perspective, it all is seamless.
In order to better customize remote sessions such as this, Microsoft exposed the
concept of a PowerShell Session Configuration. A session configuration allows
for numerous customizations to take place when connecting to a remote machine
via the named configuration. The configuration acts as an end point to which a
user connects. A user can decide which end point they'd like to connect to, or use
the default end point. When no end point is specified, users will connect to the
Microsoft.PowerShell session configuration.

Note that on a 64-bit system users will connect to the 64-bit
endpoint by default. On 32-bit systems there will be a dedicated
endpoint rather than two separate ones.

PS C:\ > Get-PSSessionConfiguration

Notice that in the first session configuration, microsoft.powershell, the Permission
is set to allow ard\adriscoll all access. This effectively makes the user an
administrator with all possible permissions. These configurations are defined on the
local machine we are running this cmdlet on.

In order to use one of the session configuration end points it requires us to utilize the
Enter-PSSession cmdlet, much like we were doing previously. In this circumstance
we will specify the end point, or session configuration that we wish to connect to.
Depending on how the session configuration is set up, our experience may differ
as follows:

PS C:\> Enter-PSSession –ComputerName driscoll-host –Credential ard\
adriscoll –ConfigurationName Microsoft.PowerShell

Chapter 3

[51]

Although issuing the command with this configuration name does the same as not
specifying the configuration name at all, it illustrates the point that we can easily
connect to a session that was set up for an entirely different use case. For example,
running Active Directory cmdlets or maybe enabling Exchange access.

Session configurations are not a new concept to PowerShell, as they were introduced
in the second version. The new feature is the ability to change the context within
which the remote session is executing. In PowerShell 2.0, the remote session
would execute under the delegated credentials of the user that authenticated via
the remote session. This can now be configured using the session configuration
cmdlets. Notice that the previous Get-PSSessionConfiguration cmdlet returned
several SessionConfiguration objects. One of the properties of these objects is the
RunAsUser property as follows:

Name : microsoft.powershell32

PSVersion : 3.0

StartupScript :

RunAsUser :

Permission : BUILTIN\Administrators AccessAllowed

By default, the value is $null for the pre-defined session configurations. When this
is the case, users connected to that session configuration will run as themselves. Any
permission on that remote box will apply directly to that user. We can adjust this
very simply by modifying an existing session configuration or creating a new one.

Modifying existing session configurations
First, let's see what it takes to modify one of the existing sessions. If for
example, we wanted to give a user access to the default PowerShell session,
who was not already a part of the local administrators' group, we could use the
Set-PSSessionConfiguration cmdlet. This cmdlet modifies existing session
configurations. There is a handy parameter for the cmdlet that will display a
Windows access control list dialog to us as follows:

PS C:\ > Set-PSSessionConfiguration Microsoft.Powershell –
ShowSecurityDescriptorUI

Improved Administration

[52]

After executing this command, we will be prompted with a confirmation prompt.
The prompt notifies us that the WinRM service will be restarted. Before issuing
the command it is pertinent to realize that all remote or local sessions will be
disconnected. After providing Y to the prompt we will then see the familiar
Windows ACL dialog as shown in the following screenshot:

Notice the fine grained permissions that can be set for particular users and groups.
Depending on the type of cmdlet, PowerShell can limit what the user has access
to. They are broken down into three groups: Read, Write, and Execute. This
dialog lets us specify which users or groups will have access to this particular
session configuration or end point. This helps us to limit access to the machine
via PowerShell remoting. Let's take it a step further and create a new session
configuration that utilizes the new delegated administration capabilities available
in PowerShell 3.0.

Chapter 3

[53]

Creating a delegated session configuration
The cmdlet which is used for creating session configurations is the
Register-PSSessionConfriguration cmdlet. In order to run this cmdlet,
we must run the PowerShell command prompt as an administrator. Although
PowerShell will notify us before continuing, it is important to know the WinRM
will be restarted after registering a new session configuration. This will cause any
local or remote WinRM session to terminated.

Registering new session configurations
Let's take for instance, that certain users need to access a Team Foundation Build
server. The services on the machine run as a trusted Build service user that only a
few selected domain administrators know the credentials to. In order to provide
access to a few developers that may need to access some resources on the build
machine, without knowing the credentials to the build service account, we can set up
a session configuration that delegates those users to run as the build service account.

For our example, we are trying to allow the mdnvdi\developers Active Directory
group to run as the mdnvdi\tfsbuilder account. We will be configuring the session
configuration to run in this manner. First, let's elevate a command prompt and
examine the Register-PSSessionConnfiguration cmdlet parameter definition
as follows:

One side note is that there is actually a second parameter set, but it is intended
for advanced developers looking to create session configurations using binary
files. From the previous parameter definition we can see that there are a lot of
things that can be configured for remote sessions. The most important parameters
in our case are SecurityDescriptorSddl, ShowSecurityDescriptorUI, and
RunAsCredential. The first two parameters define what user will be allowed to
access our newly defined session configuration. The final parameter defines under
which user the session configuration will execute.

To create our new configuration we can simply execute the following command:

PS C:\> Register-PSSessionConfiguration –Name TfsDevelopers
-RunAsCredential mdnvdi\tfsbuilder -ShowSecurityDescriptorUI

Improved Administration

[54]

The command will ask us for the users that will be able to access the session
configuration. From here, we can select the developers' group and give them
full permissions. Next, the command will ask us for the credentials for the
mdnvdi\tfsbuilder account. All this information will be stored securely in
WinRM. The WinRM service will then be restarted.

Connecting to a newly registered session
configuration
At this point, developers that are part of the previously specified group will be
able to access this end point and run as the tfsbuilder account. This could be
accomplished with the Enter-PSSession cmdlet as follows:

PS C:\> Enter-PSSession –ComptuerName mdnvdi-builder –ConfigurationName
TfsDevelopers –Credential mdnvdi\adriscoll

[mdnvdi-builder] PS C:\> whoami

Mdnvdi\tfsbuilder

In this command we connected to the mdnvdi-builder machine as the user
mdnvdi\adriscoll. Once we were authenticated and connected we ran the whoami
process which returns the user that we are running as. As you can see, we are
running as the mdnvdi\tfsbuilder account. In the previous version of Windows
PowerShell this would require additional and often very involved steps. Now the
selected users will be able to execute the tasks under that delegated permissions
of the tfsbuilder user. This type of scenario could be handy for all kinds of
applications where a user may need a different set of permissions when connecting
to a machine. In a different circumstance, it may be necessary to remove permissions
from a user, rather than grant them. The RunAsCredential could be a user who did
not have as much permission as the user who is authenticating against the end point.

In addition to running against a remote machine, it would be possible to set
up session configurations for a local machine as well. This could allow users to
accomplish the same types of tasks as we have seen but locally rather than remotely.

PowerShell session configurations are a very helpful but little known feature.
Their usefulness has been expanded with the addition of delegated administration.
As well adding this helpful feature, Microsoft solidified the behavior of remote
sessions when dealing with real-world connection problems or client migration. The
addition of robust and resilient sessions makes the work of an administrator much
less frustrating.

Chapter 3

[55]

Robust and resilient remote sessions
Remote sessions in PowerShell were a great feature but suffered from a few key
issues that could cause an administrator issues when working in the field. Often, the
goal of a remote session is to administer a machine which is physically not located
within the office or even the general geographic location of the administrator. The
further away the machine, the greater the chance that network related issues will
cause connection failure. In the event of a connection failure, PowerShell does
not behave as many interconnected technologies will. Rather than recovering, the
session would merely be lost and any work would need to be recovered or repeated.
Furthermore, an administrator can now disconnect and reconnect to a remote
session. This allows for us to move from one machine to another while the session is
still in progress on the remote machine.

A long running example
This could be helpful in long running job scenarios. To illustrate how this can be
useful we will use an example of a script which is checking for a memory leak in a
process. It runs over the course of ten minutes and gathers several memory statistics
of the process to see if there is a gradual increase in overall usage over that time. The
script waits two seconds between each reading and reports the output directly to the
host. An administrator will evaluate the data after the process has completed. It is
done as follows:

$stopTime = Get-Date

$stopTime.AddMinutes(10)

Start-Job –Name MemoryJob {

 while ((Get-Date) –lt $stopTime)

 {

 Get-Process BadService | Select-Object PrivateMemorySize, WorkingSet,
VirtualMemorySize

 Start-Sleep –Seconds 2

 }

}

This script sets the stopTime variable to the current date and time returned by
Get-Date and adds ten minutes to it. The loop checks to see if the current time is
still less than the stop time. The Start-Sleep pauses the iteration of the loop for two
seconds. The entire content of the loop is inside a local job because we want the script
to return control to the console so that we can disconnect our session. The private
memory size of BadService, working set, and virtual memory size will be written to
the host. For the remainder of this example, we will assume that the previous script
is saved in the file $HOME\CheckMemoryUsage.ps1.

Improved Administration

[56]

The different memory size metrics are useful for different reasons so getting all of
them helps to tell a better story of memory usage of a process.

In our scenario, the script described previously will need to be run on a remote
machine which has the suspect BadService. As the script takes ten minutes, it is
expected that the administrator will not want to simply wait and watch the script
as it executes. Before PowerShell 3.0, it would be necessary to keep the PowerShell
command line open while this script was executing. Closing the console or
experiencing even a slight network disconnection would result in the session
being terminated and the script would need to be re-run.

Using resilient sessions
The first step to creating a resilient session is using the New-PSSession cmdlet
to create a new named session. Without a name it will be difficult to locate the
session we are attempting to reconnect in the future. This is done with the
following command:

PS C:\> New-PSSession –ComputerName driscoll-desk –Name
CheckMemorySession

Previously, you will have noticed that we are connected to driscoll-desk on the
default Microsoft.PowerShell session configuration. Our session state is opened
and we are ready to begin executing the script. We can retrieve our session and store
it into a variable so that we can use it with Invoke-Command as follows:

PS C:\> $s = Get-PSSession –ComputerName driscoll-desk–Name
CheckMemorySession

PS C:\> Invoke-Command –Session $s –FilePath $Home\CheckMemoryUsage.ps1

As the script was designed in a way that it runs asynchronously, the previous
command will return right away. At this point the script is running on the remote
driscoll-desk machine. We can now experiment with disconnecting the session
and connecting from another PowerShell console. To disconnect a session explicitly,
we use the Disconnect-PSSession cmdlet as follows, which gives the output as
shown in the following screenshot:

PS C:\> Disconnect-PSSession $s

Chapter 3

[57]

Our session is now disconnected, but is still running on the remote host. We can
now exit the console completely. After exiting the console, we can now re-open the
PowerShell console. The first thing we can check after launching a new console is
whether the remote machine is still running our remote session. This is done using
following command:

PS C:\> Get-PSSession –ComputerName driscoll-desk –Name
CheckMemorySession

Notice that we are in the same state, in which we were when we first disconnected
from the session in the previous console. We now have the opportunity to reconnect
to the session using the Connect-PSSession cmdlet as follows:

PS C:\> Connect-PSSession ComputerName driscoll-desk –Name
CheckMemorySession

This reconnects the session with computer driscoll-desk.

Once the connection is established, we are free to interact with the session as if it
was a newly created session within our console. The ability to execute commands
with Invoke-Command or enter the session explicitly using Enter-PSSession
both behave exactly the same as they did in the previous version of PowerShell.
For example, we can now evaluate the progress of the job we started in the last
PowerShell console as follows:

PS C:\> Enter-PSSession –Id 6

[driscoll-desk] PS C:\> Get-Job

This gives us the following output:

The job has completed and we could now utilize the data stored within it to
evaluate whether or not the process we were monitoring was in fact leaking
memory. Once we have finished using our session we need to remove it using
the following command:

[driscoll-desk] PS C:\> Exit-PSSession

PS C:\> Remove-PSSession –ComputerName driscoll-desk –Name
CheckMemorySession

Once the session has been removed we can no longer connect to it. The data that was
stored in the remote job is lost as well, along with the session as follows:

PS C:\> Get-PSSession –ComputerName driscoll-desk

Improved Administration

[58]

Notice that in this Get-PSSession command the CheckMemorySession is no longer
listed. Using the Remove-PSSession cmdlet is not the only way a session will be
recycled on a remote machine. There is an idle timeout setting too, which is set
on a remote session, so that orphaned sessions are not left behind. By default, the
idle timeout is set to four minutes. To adjust this time out value we can use the
New-PSSessionOption cmdlet. The IdleTimeout parameter accepts milliseconds
as follows:

PS C:\> New-PSSessionOption –IdleTimeout 300000

Notice that the final value for the session option is the IdleTimeout and it is set to
five minutes or 300,000 milliseconds. To use the command effectively we would
need to store the session option in a variable and pass it to the New-PSSession
cmdlet as follows:

PS C:\> $o = New-PSSessionOption –IdleTimeout 300000

PS C:\> New-PSSession –ComputerName badservice-host –Name
CheckMemorySession –SessionOption $o

Additionally, the default session option can be set using the PSSessionOption
preference variable, as shown in the following commands:

PS C:\> $PSSessionOption.IdleTimeout = 300000

PS C:\> New-PSSession –ComputerName driscoll-desk –Name
CheckMemorySession

The PSSessionOption variable value will be used whenever a new session is created
or entered and the session option is not explicitly specified.

Chapter 3

[59]

We can even use the new inline syntax to define the parameters for the session
options. This syntax utilizes a hash table to define the property values as follows:

PS C:\> New-PSSession -ComputerName driscoll-desk -SessionOption @
{NoMachineProfile=$true; idleTimeout="00:05:00"}

Note that the remote computer could specify an IdleTimeout value as well. If this
value is specified, the value that is lesser will be used.

The real benefit of this feature is not in the ability to interact with a single machine,
as we have just experimented with, but instead to interact with many machines.
Rather than having to manage many connected sessions, and worrying about
the state of that connection, it is possible for an administrator to simply connect,
start a task, disconnect, and check on the result of that task at a later time from
another machine. This ensures a much better level of scalability of remote
PowerShell interaction.

Experimenting with resilient sessions
In addition to the carefully designed disconnected architecture that was
implemented, Microsoft took steps towards ensuring that the WinRM protocol
behaves much better under unexpected connection issues as well. Rather than losing
a session to a bad network, a session can be reconnected after failure. PowerShell will
even attempt to reconnect automatically. This can best be shown with an example.
The Windows PowerShell release notes have by far the simplest and most effective
example available. It demonstrates exactly how the PowerShell console behaves.

The example requires two PowerShell consoles to be running. The first console is
responsible for starting a remote session with the local machine. The second console
will remove the WinRM end point which the first console is connecting to. This
simulates a loss in connectivity.

First start two PowerShell consoles. We can refer to them as console one and console
two. Console one will start the remote operation and console two will disconnect that
operation. Execute the following commands in console one. The console will begin
listing the iteration number that it is currently on. Console one will block up to 500
seconds as follows:

PS C:\> $s = New-PSSession -ComputerName localhost
PS C:\> Invoke-Command $s { 1..500 | % {echo "Long running task - part
$_"; sleep 1} }

Now, in console two, execute the following command, causing console two
to disconnect:

PS C:\> Remove-Item WSMan:\localhost\Listener* -Recurse

Improved Administration

[60]

As we switch back to console one we can see that the console has lost connection
to its remote session. The PowerShell console provides a convenient count
down timer that displays how much time before the session will be marked in a
disconnected state. The session will not be removed and any data processed during
the session will still be available until the session is restored. This is shown in the
following screenshot:

Now move back into console two and type the following command:

New-Item WSMan:\localhost\Listener\ -Transport HTTP -Address * -Force

The command recreates the end point which we have previously removed. This
allows console one to continue to run. One interesting note is that console one will
output all the parts that were completed from the time we disconnected until the
time we were reconnected. The following screenshot explains this:

Rather than the session being terminated on the server end, the session continued
to run, even though the client lost connection. This is a vast improvement from
the previous version of PowerShell. In environments where spare connectivity
is an everyday issue, this functionality will make PowerShell a much more
viable resource.

Chapter 3

[61]

Improved Restart-Computer
The Restart-Computer cmdlet is very handy. Restarting a whole host of computers
can be a big pain but using this cmdlet makes it much easier. Typically, a computer
restart is a side effect of another action. We simply do not restart computers for
fun. Rather, a piece of software has been installed or a Windows update has been
applied. Although the cmdlet is very useful, it did have a few caveats in the previous
version of PowerShell. The main issue was that there was no way to ensure, that the
computer was running again without constantly attempting to ping the machine
using a mechanism as follows:

PS C:\> Restart-Computer $serverName

PS C:\> while (-not (Test-Connection –ComputerName $serverName –Quiet))
{Start-Sleep 10}

These commands will restart the named computer and ping it every ten seconds until
it responds. Once the computer responds to the ping, the script will continue on. This
excess scripting made this cmdlet a bit of a pain to use in actual scripts. Additionally,
the Restart-Computer cmdlet can be used quite often by administrators, so having
to deal with this every time is annoying.

The enhanced Restart-Computer
Rather than using this mechanism, we can now take advantage of the Wait
parameter that has been added to the Restart-Computer cmdlet. Rather than
having to write any additional waiting logic, we can just specify the Wait
parameter as follows:

PS C:\> Restart-Computer $serverName –Wait

The execution of the script will be blocked until the Restart-Computer cmdlet
returns from its restart operation. This makes it much more practical to utilize
the cmdlet in your scripts. Although it helps all administrators the most,
administrators new to PowerShell will find this parameter the most helpful. It
may be very difficult to come up with the waiting logic correctly without knowing
a lot more about PowerShell.

The length and type of Wait can be specified with a few additional parameters that
have been added. The amount of time to wait for the computer to restart, before
considering the operation timed out can be specified using the Timeout parameter.
This parameter accepts the number of seconds to wait. The next restart will wait up
to five minutes, or 300 seconds, for the computer to restart as follows:

PS C:\> Restart-Computer $serverName –Wait –Timeout 300

Improved Administration

[62]

The logic which we developed ourselves relied on the network to be available rather
than particular services. This could cause issues if we typed to invoke PowerShell
remotely on the server which we are restarting. Although the logic would stop
waiting the WinRM service may not be ready to accept our request for a remote
session. This could cause the rest of the script to fail. In the following script the
Invoke-Command call would most likely fail as although the network is ready, the
WinRM service is most likely not.

PS C:\> Restart-Computer $serverName

PS C:\> while (-not (Test-Connection –ComputerName $serverName –Quiet))
{Start-Sleep 10}

PS C:\> Invoke-Command { Get-Service } –ComputerName $serverName

To alleviate this issue the Restart-Computer cmdlet has the addition of the For
parameter. It accepts three values: WinRM, WMI, and PowerShell. Specifying this
parameter with one of the stated values will cause the Restart-Computer cmdlet
to wait for that particular feature to become ready on the target machine before
releasing the WinRM service from the wait. If For is not specified, the default is
PowerShell. It is done as follows:

PS C:\> Restart-Computer $serverName –Wait –For WinRM

This script will wait for WinRM to be ready on the target machine indefinitely. This
can be very handy if we only need to access a particular component such as WMI.

Installing a product which requires a restart
For example, if we were interested in ensuring that the installation of an MSI
package was successful after the computer restarts, we could wait for only WMI to
become ready rather than the entire WimRM infrastructure. It is done by using the
following commands:

PS C:\> Invoke-Command { Start-Process "MSIExec" –ArgumentList " /s /qn
C:\MyProduct.msi" –Wait } –ComputerName $serverName

PS C:\> Restart-Computer $serverName –Wait –For WMI

PS C:\> Get-WmiObject –Class Win32_Product –Filter "Name='MyProduct'" –
ComputerName $serverName

Chapter 3

[63]

In this script we start MSIExec, which is the application responsible for installing
MSI packages, on the remote machine with the flags for a silent installation of the
MSI package MyProduct.msi. The Start-Process command will wait for the
installation to finish. After it is completed, we restart the computer and wait for
WMI to become ready after the restart. Once restarted, we query WMI to ensure that
MyProduct is correctly registered in the installed products on the target machine.
The Restart-Computer cmdlet takes care of all the pinging of the remote machine to
check to see if WMI is ready. Because the Restart-Computer cmdlet must constantly
ping the remote machine until it is available, Microsoft exposed another related
parameter which allows this functionality to be customized.

Using the delay parameter
The Delay parameter is used to specify the amount of time taken to make remote
machine ready. The value is given in seconds as follows. It defaults to five:

PS C:\> Restart-Computer $serverName –Wait –For WinRM –Delay 10

This command will query the remote machine's readiness of WinRM every ten
seconds until it is ready.

Using different communication protocols
In addition to the new Wait parameter Microsoft changed how the Restart-Computer
cmdlet works internally. In the past it relied solely on the Distributed Component
Object Module (DCOM), to communicate to the remote computers. In many
circumstances DCOM is blocked by firewalls, as it can be seen as a security concern.
This prevented the Restart-Computer cmdlet from working for machines blocking
the DCOM ports. To alleviate some of the issues with this, the ability to use the
Restart-Computer across the WSMan protocol was added. The WSMan protocol
is used by the WinRM service and handles PowerShell remoting.

Several new parameters have been added to allow for this. The first is the Protocol
parameter. This parameter changes the protocol which is used by the cmdlet. We can
either specify WSMan or DCOM as follows. DCOM is the default value:

PS C:\> Restart-Computer $serverName –Protocol WSMan

In addition to being able to change the protocol used, we can specify the type of
authentication too used for each type of protocol.

WSMan supports the following parameters: Default, Basic, Negotiate, CredSSP,
Digest, and Kerberos.

Improved Administration

[64]

DCOM supports the following parameters Default, None, Connect, Call, Packet,
PacketIntegrity, PacketPrivacy, and Unchanged.

To change the authentication types, use either the WSManAuthentication or
DCOMAuthentication parameters now available on the Restart-Computer
cmdlet as follows:

PS C:\> Restart-Computer $serverName –Protocol WSMan –WSManAuthentication
CredSSP

Summary
In this chapter we learned that the new features within the latest version of
PowerShell, had greatly extended and simplified the day to day tasks of an
administrator. The scheduled jobs feature made it much easier to setup repeatable
tasks so that less time is spent having to repeat the automation. It instead automated
the automation, leaving us to spend more time working on more important tasks.
The added delegated administration system allowed administrators with less
permission to run as different users. This allowed better control or who has access to
which resources and enabled more people to take care of tasks that they might not
have been able to do before. Finally, the improvements to the Restart-Computer
cmdlet made it much easier to work correctly into scripts and work with network
infrastructure. This made the cmdlet much more practical to use in scripts.

In the next chapter we will look at the new Windows Workflow for PowerShell and
how it takes scripts to an entirely new level.

Windows Workflow
in PowerShell

Scripting and programming can be difficult. Understanding the number of
requirements for developing any piece of software can be a tremendous task to
undertake. Typically, developers break down the larger pieces of the puzzle into
manageable chunks, hoping that the chunks will fit together in the end. Often,
these components may be poorly designed, not meet requirements, or are very
rigid. As programming and scripting languages advance, more and more of the
implementation details are pushed onto the computer and more of the business rule
development is assigned to the application developer. PowerShell and programming
languages such as C# provide a lot of benefits over some of the lower level languages
that require much more care, when it comes to memory and state management.

Microsoft has started taking steps to move beyond programming as we know it.
Rather than having to deal with code, they are starting to take a much more visual
approach with products such as Visual Studio LightSwitch and Windows Workflow.
The latter product enables developers, designers, or even product managers to
develop product workflow through a visual designer, requiring little to no actual
programming, in a traditional sense. Rather than working with if blocks and while
loops, they worry more about what happens if a user cannot login to their desktop.

Windows Workflow in PowerShell

[66]

Thinking in business rules rather than source code has many advantages. It attacks
the true need for the software. Rather than figuring out how to complete a task, we
look at what the outcome of that task should be. In PowerShell 3.0, Microsoft added
the ability to harness Windows Workflow. Now it is possible to create re-usable
workflows in script that can expose higher level business logic, rather than merely a
function or module.

In this chapter we will cover the following:

•	 An overview of Windows Workflow
•	 How to integrate Windows Workflow into PowerShell
•	 The limitations of Windows Workflow in PowerShell
•	 Working with custom activities and activities in Visual Studio

Understanding Windows Workflow
Windows Workflow is a vast product. It encompasses many other products
released by Microsoft such as Visual Basic .NET, Visual Studio, and Microsoft
.NET. Workflows can be created that do any number of tasks. Each individual task
defined in a workflow is referred to as an Activity. Activities can be binary, written
in languages such as C#, or can be composed of other activities. With the ability to
build activities on top of each other it enables developers to create complex systems
that seem to serve a single purpose and are re-usable.

The main goal of Windows Workflow is to provide:

•	 Scalable solutions that can be easily run sequentially or in parallel
•	 Complex activities that are repeatable, parallelizable, interruptible,

and recoverable

Chapter 4

[67]

The primary way to define a workflow typically has been with Visual Studio.
Visual Studio offers a visual editor designed to edit a workflow definition, similar
to a flow chart. There are activities for making choices, performing actions, or even
running tasks in parallel. Each of these activities can be dragged onto the designer's
canvas and into the workflow. This visual type of feedback makes it much easier to
understand. This is explained in the following screenshot:

Windows Workflow in PowerShell

[68]

A Windows Workflow is defined as a large Extensible Application Markup
Language (XAML) file. XAML is very similar to the XML syntax. As a workflow
is defined in XAML before it is compiled, it offers a standard language which
all workflows speak rather than the multitude of programming languages that
are available.

In addition to creating workflows in Visual Studio, we can create custom workflow
designers for specialized users as well. Workflow designers for product managers
or even end users could be developed to create custom workflows that integrate
directly into a product. Workflows can then be compiled and hosted in a .NET
application for use just like any other source code-written component.

Microsoft's goal with Windows Workflow, is to create business logic easily that is
re-usable, repeatable, parallelized, restartable, stoppable, interruptible, and frequent.
Exposing these types of characteristics natively makes workflows ideal for use in
business and IT administration. This is one of the main reasons that workflow was
built into Windows PowerShell 3.0.

Integrating Windows Workflow
with PowerShell
PowerShell has always been about simplicity in much the same way as workflow.
Being able to intertwine the two together is a natural progression. Windows
PowerShell workflow integration offers a lot of benefits in terms of re-usability.
Users can create and re-use workflows from Visual Studio directly in PowerShell.
This allows many of the pre-existing workflows to be consumed by PowerShell,
offering a host of new, higher level functionality which was not found in
PowerShell before.

Additionally, workflows created in PowerShell can be used by the Visual Studio
Workflow designer. This alleviates much of the code necessary for hosting the
PowerShell runtime and running commands. Higher level scripts can be developed
into workflows to accomplish larger tasks and simply dropped into an existing
Visual Studio Workflow.

Chapter 4

[69]

By design, PowerShell workflows expose numerous standard parameters that
allow for remote execution, parallelization (jobs), and data persistence. The ability
to harness these types of features without having to write any additional logic is
immensely beneficial. This allows for the workflow to be run almost anywhere. This
is what makes workflows so re-usable.

First steps in workflows
The first step into Windows Workflow in PowerShell is to begin defining a workflow.
A workflow looks very similar to a function but has some very different traits
that must be taken into account to use the workflow concept correctly. To define a
workflow, we can use the new workflow keyword, followed by a name and a script
block as follows:

PS C:\> workflow Invoke-String { "String" }

Running this command will define the workflow in our session. Now it is possible to
execute the workflow, just like we would execute a cmdlet or function as follows:

PS C:\ > Invoke-String

String

Running the workflow behaves much like running a command would, aside from
some noticeable speed differences. The speed of execution is due to the fact that
the workflow is actually compiled when we define it and must be loaded the first
time we run it. We can see that, that command is in fact a workflow by using
Get-Command as follows:

PS C:\ > get-command Invoke-String

Capability Name

---------- ----

Workflow Invoke-String

Windows Workflow in PowerShell

[70]

Now that we have created a basic workflow, let's take a few minutes to better
understand the concept of a workflow. As PowerShell uses the same workflow
system like the Visual Studio workflow designer, it is good to compare the two
representations to see how they fit together. In a visual workflow, activities are
dragged onto the designer surface to add an individual piece of logic or activity.
Each of these activities can take parameters and provide output data. This is
explained in the following screenshot:

Chapter 4

[71]

In PowerShell, activites are broken up by the commands within the workflow.
Each command thus becoming its own activity. Let's take for instance the following
workflow activity defined in PowerShell. The Start-Workflow is the outer activity
containing the inner two activites for starting and getting the Cmd process. Each
of the activities runs independently of the other. Just like the visual designer, the
Start-Process and Get-Process activities accept parameters. We can see this in
the following example:

PS C:\> Workflow Start-Workflow {

 #Activity 1

 Start-Process -FilePath Cmd

 #Activity 2

 Get-Process -Name Cmd

}

The visual representation of the PowerShell workflow would look as shown in the
following screenshot:

The Start-Process flows into the Get-Process. The Start-Workflow is an over
arching sequence that contains the two activities. Taking a step back to understand
the overall concept is necessary before moving forward, because the idea of a
workflow is much different than a regular PowerShell script. As we move forward,
we will examine these differences and find the similarities between a regular
PowerShell script.

Activites are independent of each other! They are in their own
scope and thus cannot even share variables amongst each other.
Think of each line, or activity as its own entity.

Windows Workflow in PowerShell

[72]

Workflow common parameters
If we run the Get-Help cmdlet against the Invoke-String workflow activity
we defined earlier, we can evaluate the syntax for the command. In addition to
the standard common parameters found with all cmdlets, we find another set of
parameters as well. These are the workflow common parameters. Refer to the
following commands:

PS C:\Users\Adam> Get-help Help Invoke-String

NAME

 Invoke-String

SYNTAX

 Invoke-String [<WorkflowCommonParameters>] [<CommonParameters>]

The workflow common parameters expose much of the functionality which is
expected in all workflows. These types of properties were described earlier, such
as parallelism and data persistence. Although there is a significant list of workflow
common parameters, some of the most important ones are listed as follows. Each of
these parameters will significantly alter how the workflow is run.

•	 PSComputerName: This is a list of computer names to run the
workflow against.

•	 PSPersist: This forces the workflow to checkpoint the workflow state and
data after each activity.

•	 AsJob: It runs the workflow as an asynchronous job on the local computer.

These listed parameters give a good feel as to some of the capabilities of the
workflow. First, it can be run remotely on any number of computers. Secondly, it can
persist state and data between activities. Finally, it can be run asynchronously on
the local computer. Each of these traits makes a workflow much more robust than a
typical job or script.

In addition to altering how the workflow is run, we can access the different common
workflow parameters from within a workflow. There are several different ways of
doing this. To simply access a common workflow variable we can reference it much
like any other parameter found in a regular script or function. For example, if we
want to access the name provided to the PSComputerName parameter, we could use
the $PSComputerName variable from within the workflow as follows:

PS C:\> workflow Get-ComputerName {

"ComputerName: $PSComputerName"
}

PS C:\> Get-ComputerName –PSComputerName localhost

ComputerName: localhost

Chapter 4

[73]

In order to iterate or modify the workflow common parameters we can use the
Get-PSWorkflowData and Set-PSWorkflowData activities. The Get-PSWorkflowData
command is a generic activity and it is required that we specify the type we are
looking to return. If, for example, we wanted to return the list of parameters, we
could use the following workflow:

PS C:\> workflow Get-WorkflowParameter {

Get-PSWorkflowData[Hashtable] –VariableToRetrieve All

}

PS C:\> Get-WorkflowParameter

This will show us the list as shown in the following screenshot:

Only the parameters that are currently being used are returned for the activity. We
will not see the computer name or persist value unless they are specified. If we run
the same command again but with the use of the PSComputerName parameter we will
see it in the hash table that is returned as follows:

PS C:\> Get-WorkflowParameter –PSComputerName localhost

The hash table is shown in the following screenshot:

Windows Workflow in PowerShell

[74]

The All value for the VariableToRetrieve is a keyword. To retrieve another
parameter we can specify that parameter name along with the type specifier for
a string array as follows. The name of the parameter is case sensitive:

PS C:\> workflow Get-WorkflowParameter {

Get-PSWorkflowData[string[]] –VaraibleToRetrieve PSComputerName

}

PS C:\> Get-WorkflowParameter –PSComputerName localhost

Localhost

Finally, it is also possible to set the parameters from within the workflow. To do this,
we will use the Set-PSWorkflowData.

PS C:\> workflow Get-WorkflowParameter {

Set-PSWorkflowData –PSComputerName driscoll-host

Get-PSWorkflowData[String[]] –VariableToRetrieve PSComputerName

}

PS C:\> Get-WorkflowParameter –PSComputerName localhost

Driscoll-host

Pay attention to the use of the full parameter names in
cmdlets throughout this chapter. Positional parameters
are not supported in workflows.

Workflow as a job
Jobs are really helpful when attempting to run a long running activity or multiple
activities at once. Executing a workflow as a job, is just as easy as executing a script
block as a job using Invoke-Command. When running a workflow as a job on the
local computer, we can use all the job cmdlets for interacting with the workflow
job as follows:

PS C:\Users\Adam> $StringJob = Invoke-String -AsJob

PS C:\Users\Adam> Get-Job

PS C:\Users\Adam> Receive-Job $StringJob

String

Chapter 4

[75]

This produces the result as shown in the following screenshot:

Remote execution
The workflow can be run on a remote computer using the PSComputerName
parameter as well. There are several other parameters that are used with the
PSComputerName parameter that allow us to utilize different authentication
mechanisms, ports, and even session configuration end points. To run our simple
Invoke-String workflow on another computer we could do the following:

PS C:\> Invoke-String –PSComputerName $serverName

String

Just like an Invoke-Command call, the workflow returns the string back to the local
command window. There are several common workflow parameters that can be
used to modify how the workflow activity will connect to a remote machine. Some
of these parameters include PSAuthentication, PSUseSSL, and PSPort. In addition
to being able to specify these types of parameters, it is possible to specify a session
configuration as well. A workflow PowerShell session configuration is very similar to
a regular remoting end point.

We still use the Register-PSSessionConfiguration cmdlet to create the
new session configuration. The only difference is that we need to use the new
SessionType parameter to specify that the session configuration is a workflow
session type. In addition to being able to create an end point that is designated
for workflows, we can configure that end point with several workflow specific
configuration options. To create a new session configuration option for a workflow
we use the New-PSWorkflowExecutionOption cmdlet.

Some of the interesting options available for this cmdlet include the maximum size
of the persistence store, the maximum number of concurrently executing workflows,
and maximum suspended workflows. To create a simple session configuration we
could do the following:

PS C:\> $Option = New-PSWorkflowExecutionOption –MaxRunningWorkflows 5 –
MaxPersistenceStoreSizeGB 10 –MaxSuspendedWorkflows 10

PS C:\> Register-PSSessionConfiguration –Name Driscoll.Workflow –
SessionType Workflow –SessionTypeOption $Option

Windows Workflow in PowerShell

[76]

Custom workflow parameters
Workflows, much like functions or scripts, can use the param keyword to define
parameters that are accepted by the workflow. The use of a type specifier supported
just as in functions and naming the variable will expose the variable as a parameter
on the workflow. The syntax looks almost identical to that of a function using the
following commands:

PS C:\> workflow Write-String {

 param([string]$string)

 "String to write is: $string"

}

In addtion, very similar to a function, getting the help for the workflow will show
that the workflow exposes the parameter defined by the param keyword. This means
that there is tab completion available as well, for the parameter on the workflow.
This makes it very easy to discover which additonal parameters a workflow supports
as follows:

PS C:\> Get-Help Write-String

NAME

 Write-String

SYNTAX

 Write-String [[-input] <string>] [<WorkflowCommonParameters>]

The param block supports the Parameter attribute as well, which can be used to
adorn parameters of advanced functions. For example, we could use it to mark a
particular parameter as mandatory as follows:

PS C:\> workflow Write-String {

 param(

 [Parameter(Mandatory)]

 [string]$input)

 "String to write is: $input"

}

Chapter 4

[77]

Scripts in workflows
In order to make a workflow behave more like a regular PowerShell script, we can
use the inlineScript keyword. The inlineScript keyword executes everything
within the block just as it would a regular PowerShell script. This is done using the
following commands:

PS C:\> workflow Invoke-PowerShellScript {

 inlineScript {

 $Process = Start-Process Notepad

 Get-Process $Process

 }

}

In this inline script we can see that the script is not following the rules of workflow.
When using workflow activities, like Start-Process, outside of an inline script they
support neither positional parameters nor dynamic variable scoping. In contrast, the
inline script behaves more like PowerShell and allows for these types of language
features. Even though this is the case, running this workflow will behave as it is
written. The notepad process will be started and the process information will be
returned to the console.

Note that inline scripts, like workflows in general, do not
support user interaction. Using commands like Write-Host
will fail anywhere within a workflow; including inline scripts.

The inline scripts can be helpful for other reasons as well. One of the very important
reasons is the ability to call .NET methods. It is not possible to call a .NET method
within the regular scope of a workflow. On the other hand, this is supported by the
inline script block as follows:

PS C:\> workflow Stop-Notepad {

 Start-process -FilePath notepad

 (Get-Process –Name Notepad).Stop()

 }

This produces the following output:

Windows Workflow in PowerShell

[78]

In order to call the .NET method we need to place the call to stop within an inline
script as follows:

PS C:\> workflow Stop-Notepad {

 Start-process -FilePath notepad

 inlineScript {

 (Get-Process –Name Notepad).Stop()

 }

 }

Working between workflows
Just like with the visual workflow designer it is possible to allow one workflow to
call another workflow. This is simply done by calling the workflow just like you
would from the command line within the other workflow using the following
commands. The workflow must be defined before it is called:

Workflow Invoke-Jump {

 "Jumps"

}

Workflow Invoke-Johnny {

 "Johnny"

 Invoke-Jump

}

PS C:\> Invoke-Johnny Jumps

If the Invoke-Jump workflow were to change, the Invoke-Johnny workflow would
remain the same. Johnny would still jump. This is because the activities are directly
referenced when the activity is defined. Thus, Invoke-Jump becomes part of
Invoke-Johnny. If we wanted Johnny to run rather than jump, we would need
to redefine Invoke-Johnny.

It is important to note that workflows nested within another workflow cannot
contain a param block as well. This is because the param block is not natively
supported by workflow and a wrapped function is placed around the outermost
workflow. The following error would be shown if we tried to nest a workflow which
contained a param block in another workflow:

Unable to find type [Mandatory]: make sure that the assembly containing
this type is loaded.

Chapter 4

[79]

In addition to merely referencing other workflows, workflows can be defined within
a workflow. When this is the case, the inner workflow is not visible to anyone
outside of the parent workflow. To nest a workflow, use the workflow keyword
with the script block of another workflow using the following commands:

Workflow Invoke-TopLevel {

 "This is the top level"

 Workflow Invoke-LevelOne{

 "This is level one"

 Workflow Invoke-LevelTwo {

 "This is level two"

 }

 Invoke-LevelTwo

}

Invoke-LevelOne

}

PS C:\> Invoke-TopLevel

This is the top level

This is level one

This is level two

If we were to attempt to call one of the inner workflows directly from the
command line, we would receive an error. The only workflow visible to us is the
Invoke-TopLevel workflow. Finally it is possible to define a re-usable function
within a workflow. A function in terms of workflow behaves in a similar way to an
inline script, but is named and can be called multiple times as follows:

Workflow Invoke-MyAge {

$MyAge = 25

Function WriteMyAge {

$MyAge = 26

"MyAge is $MyAge"

 }

"MyAge is $MyAge"

WriteMyAge

}

PS C:\> Invoke-MyAge

MyAge is 25

MyAge is 26

Windows Workflow in PowerShell

[80]

Parallel execution
Because each activity could be independent of the next, it is possible to run activities
in parallel. To do this we must utilize the Parallel keyword followed by a script
block as follows:

PS C:\> Workflow Start-Editor {

 Parallel {

 Start-Process –FilePath Notepad

 Start-Process –FilePath Wordpad

 }

}

Both Start-Process commands will start nearly at the same time. Starting activities
in parallel can be very beneficial in terms of performance. It fully utilizes the
multicore processors that are now standard in most machines. Although this type of
functionality was somewhat possible with PowerShell jobs, it was not nearly as easy
to accomplish as it is now with the Parallel keyword. At any point during parallel
processing, it is possible to execute a particular part of the workflow in sequence as
well. The Sequence keyword forces the processing to take place in order, rather than
parallel as follows:

PS C:\> Workflow Start-Editor {

 Parallel {

 Start-Process –FilePath Notepad

 Start-Process –FilePath Wordpad

 Sequence {

 Get-Process –Name Notepad

 Get-Process –Name Wordpad

 }

 }

}

PS C:\> Start-Editor

The output is as shown in the following screenshot:

Chapter 4

[81]

Notice the error in execution of the workflow. This is because the Sequence section
was started in parallel with the other activities or commands found in the workflow.
Due to the variablity of parallel execution, the section will not execute the same way
every time. Depending on the speed the other two statements execute at, this error
may not be shown every time. To ensure that the Get-Process is called only after
each process is started, but to ensure that each editor is started in parallel, we could
modify the previous script as follows:

PS C:\> Workflow Start-Editor {

Parallel {

Sequence {

 Start-Process –FilePath Notepad -Wait

 Get-Process –Name Notepad

 }

 Sequence {

 Start-Process –FilePath Wordpad -Wait

 Get-Process –Name Wordpad

 }

 }

}

During the execution of the previous workflow, each sequence is started in parallel,
but the activities within the sequence are executed in order.

Running the previous workflow would start each process and return the process
information back to the command line. In addition to executing individual activities
in parallel, we can iterate over collections of objects in parallel too. This is because
the activities within the loop are not related to each other.

Assume the contents of UserNames.txt looks something like as follows:

Mdnvdi\adriscoll

Prod\oprime

Mdnvdi\sfire

Prod\tstark

mdnvdi\bmarley

…

Windows Workflow in PowerShell

[82]

The following workflow iterates over the lines within the text file and outputs them
in parallel:

PS C:\> workflow Get-User {

 $lines = Get-Content –FilePath C:\UserNames.txt

 foreach –parallel ($line in $lines)

 {

 if ($line –match "mdnvdi")

 {

 "User: $line"

 }

 }

}

PS C:\> Get-User

Running the workflow will yield different results depending on the size of the file,
but in theory, any line could be output because the loop is executing in parallel.
Parallel execution is very powerful but must be used with caution and in the right
circumstances. Workflows makes it very easy to create parallel activities.

Persisting data in workflows
Data persistence between activities is natively supported in workflows. This is a
corner stone to the workflow idea. To persist data when calling a workflow we can
use the PSPersist workflow common parameter. This will cause the workflow to
persist data to the data store path in between activities. This allows for the workflow
to be paused, stopped, and restarted without affecting the state of execution.

In addition to explicitly forcing a workflow to save its state, a workflow can be
defined as well when it saves its state. This can be done by utilizing the Persist or
Checkpoint-Workflow activities. This will cause the workflow state to be saved to
the default store location.

The default store location is C:\Users\<username>\
AppData\Local\Microsoft\Windows\PowerShell\
WF\PS\default\<user SID>

Chapter 4

[83]

Limitations of PowerShell workflows
There are many limitations of PowerShell workflows that are not set on regular
scripts. The reason for much of it is to ensure that PowerShell follows the
fundamental principles of Windows Workflow. It is required to lose some
functionality to gain a whole lot more.

Variable scope
The first rule we need to examine is the workflow variable scope. This is done using
the following commands. As already stated, activities are treated as independent
units. So the PowerShell state, including variables, is not shared among the activities:

PS C:\> Workflow Start-Workflow {

 $process = Start-Process -FilePath Cmd -PassThru

 Get-Process -InputObject $process

}

PS C:\> Start-Workflow

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 47 6 1388 3752 58 0.02 20384 notepad

The workflow correctly called Get-Process with the $process variable. This is
because the $process variable was defined with workflow level scope. This,
much like script level scope, means that the $process variable is defined for all
lower level blocks of the current workflow. The best way to understand this, is to
think of a one-way mirror where the inside can see out but the outside cannot see
in. The variables defined on the outside are visible to the inside but not the other
way around. As the $process variable was defined in the outermost layer, the
Get-Process has access to it.

Note that workflow level variables are only available to the
current workflow and related blocks but not nested workflows.

Windows Workflow in PowerShell

[84]

To examine this point further, we can modify the example using the following
commands to use the new inlineScript keyword. The inlineScript keyword
allows us to write a script which is not made of activities but is rather a regular
PowerShell script as a single activity:

PS C:\> Workflow Start-Workflow {

 inlineScript {

 $process = Start-Process -FilePath Cmd -PassThru

 Get-Process -InputObject $process

 }

 Get-Process -InputObject $process

}

Start-Workflow

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 47 6 1388 3752 58 0.02 20384 notepad

Receive-Job : Cannot bind argument to parameter 'InputObject' because it
is null.

As we can see, the first Get-Process call succeeded. This is because it is part of the
inlineScript, which is treated as a single activity with its own scope. The second
Get-Process call fails, because the $process variable has not been defined at the
workflow scope. Although this works as expected, there are some caveats to variable
scope in workflows that require the use of new keywords. The first is using the
scope keyword. This keyword is used, to ensure that the workflow level variable is
used rather than the inlineScript level variable as follows:

PS C:\> workflow Write-MyAge {

$MyAge = 25

InlineScript {

 $MyAge = 18

 "My age in the PowerShell Script: $MyAge"

 "My age in the Workflow: $using:MyAge"

 }

}

PS C:\> Write-MyAge

My age in the PowerShell Script: 18

My age in the Workflow: 25

Chapter 4

[85]

Notice that the using modifier brought in the variable from the outer scope, When
the using modifier is not specified, the local variable was used instead. It is not
possible to set the workflow variable from within an inline script.

No advanced function blocks
Workflows do not support Begin, Process, or End blocks that are commonly found
in advanced script functions. Workflows are intended to flow from one activity
to another, so defining a start or end block does not make sense in this context.
Additionally, workflows do not accept pipeline input so there is no need for a
process block.

Activities that run only on the local machine
There are numerous cmdlets that are used to manipulate objects within the pipeline.
Because these cmdlets are very heavy in resource usage, it was a decision to make
them only run locally. To execute these cmdlets it is necessary to use them within an
inlineScript block within the workflow.

Some of the cmdlets include the following:

•	 Add-Member

•	 Where-Object

•	 Write-Host

•	 Get-Random

•	 ConvertTo-Xml

•	 Measure-Object

The cmdlets that have no activity
implementation
Because the general concept of workflow is slightly different than that of PowerShell
of a regular PowerShell script, the numerous cmdlets that do not make sense are run
as workflow activities. Microsoft has outlined each of these cmdlets and provided
a reasonable explanation, as to why they decided to exclude the cmdlet from an
activity implementation. Although it is not possible to use the cmdlet as an activity,
it is still possible to call the cmdlet in an inlineScript block within a workflow.

Windows Workflow in PowerShell

[86]

Some of the cmdlets that have been excluded:

•	 New-Alias: This is used to only modify the current session. Activities do not
share state, so this would not make sense to ever call.

•	 Show-Command: It is not possible to interact directly with a workflow.
•	 Set-PSBreakpoint: It is not possible to debug a workflow.
•	 Format-List: It is not possible to format within a workflow.
•	 Enter-PSSession: Remote capabilities are native to a workflow, so there is

no need to utilize remoting.

Importing activities into PowerShell
There are many activities available in Visual Studio. In addition to the default
workflow activities, there are other product based workflows, such as Team
Foundation Server. For example, Team Foundation Server (TFS) uses workflow
to guide the automated build process. Whenever code is committed to the source
control system, TFS can trigger the workflow to build, test, and even deploy the
source. Using Windows Workflow to guide this makes it very easy for many build
engineers to create complex workflows that are generally easy to follow.

With the proliferation of workflow into other Microsoft products, it becomes very
necessary to harness this type of functionality directly in PowerShell. Although the
basic, built-in PowerShell activities or cmdlets offer a lot of functionality, the ability
to trigger activities just as TFS would, makes it even better.

In this section, we will investigate how to import and work with activities that
are not based on PowerShell. We will look at the limitations of certain workflow
activities as well. In the following example, we will create a workflow in Visual
Studio and import it into PowerShell. We will then execute and interact with the
workflow, just as we would with a regular PowerShell workflow.

Chapter 4

[87]

Our example workflow, CountInput, is responsible for gathering integers from the
user on the command line. It will count those integers until it encounters a -1. Once a
-1 is encountered it will display the final count of all the integers entered. This looks
as shown in the following screenshot, in the Visual Studio workflow designer:

Windows Workflow in PowerShell

[88]

This workflow utilizes several built-in workflow activities including Sequence,
WriteLine, While, and Assign. The Counter and CurrentValue variables are
defined on the Sequence level. This means, they are in scope for the entire outer
sequence: virtually the entire workflow. The workflow is actually composed of an
XAML, as mentioned earilier. The CountInput.xaml file is an XML-like definition
of a workflow. This is the native type of definition for a workflow. The XAML
defines all activity assemblies that are required to be loaded, any variables defined
in the workflow, and the actual steps taken within the workflow, as shown in the
following screenshot:

This XAML is what PowerShell inteprets and is capable of running directly. To see
this in action we need to import the XAML using the Import-Module cmdlet with
the path to the XAML file, as shown in the following commands:

PS C:\> Import-Module C:\CountInput.xaml –Verbose

VERBOSE: Loading module from path 'C:\CountInput.xaml'.

VERBOSE: Importing cmdlet 'Import-PSWorkflow'.

Chapter 4

[89]

VERBOSE: Importing cmdlet 'New-PSWorkflowExecutionOption'.

VERBOSE: Loading workflow C:\CountInput.xaml

VERBOSE: Exporting workflow 'CountInput'.

VERBOSE: Importing command as workflow 'CountInput'.

You'll notice the Import-Module does a couple things while importing the new
XAML workflow. Among them you will see that it imported the CountInput
command. Now that the count input has been imported, we can execute it just like
we would execute any other workflow in PowerShell as follows:

PS C:\> CountInput

Starting workflow...

100

26

42

200

-100

-1

The final value is: 268

The workflow successfully ran and executed as we were expecting. It gathered
each one of the inputs and added them to the counter variable. Once we entered a
-1 the while loop finished and the final value was displayed in a formatted string.
Albeit this is a simple example, but it shows how seamless integrating a custom
XAML based workflow into PowerShell is. There is no need to have to worry about
assemblies or prerequisites as the XAML is responsible for this. Instead, we only
need to import the XAML file and execute its exposed activities.

Another interesting piece of information is that as the Import-Module cmdlet is
used to import XAML files into PowerShell, XAML files can now be packaged
into modules just like scripts and binary assemblies. They can be specified in
the module manifest as any one of the values for RootModule, NestedModules,
RequiredModules or RequiredAssemblies.

Finally, it is important to know that not all built-in activities are supported by
PowerShell. There is a small list of the activities that will not work correctly
as follows:

•	 Pick

•	 PickBranch

•	 Send

•	 SendReply

Windows Workflow in PowerShell

[90]

•	 Receive

•	 ReceiveReply

•	 CancellationScope

•	 CompensableActivity

•	 Compensate

•	 Confirm

•	 TransactionScope

•	 TransactedReceiveScope

•	 Interop

In terms of how many activities there are available, this list is very small. Now that
we have examined using a Visual Studio or XAML workflow in PowerShell, we will
look at how to work in the opposite direction. This is to use PowerShell activities
within Visual Studio.

Using PowerShell workflows in
Visual Studio
There are two different ways of utilizing PowerShell activities within Visual Studio.
We can use the predefined activities by adding the Microsoft Activity assemblies
for PowerShell or we can save our custom PowerShell Workflows to an XAML file
which can be added to a Visual Studio Workflow project. When adding a custom
XAML workflow, all the assemblies will be added automatically.

Adding a Microsoft workflow
activity assembly
By adding an import to the correct PowerShell assemblies, we can drag the activities
directly into the workflow like we would any other workflow activity.

Chapter 4

[91]

The first step to getting access to our PowerShell workflow activity is to add the
assembly import to the workflow designer. When using the workflow designer, the
Toolbox window is where we can access all of our activities. If it isn't open, it can be
opened by clicking on the View menu and the clicking on Toolbox. This is shown in
the following screenshot:

Windows Workflow in PowerShell

[92]

To better organize the Toolbox window we want to create a new tab to store the
PowerShell activities. Right-click within the Toolbox and then select Add Tab. This
is explained in the following screenshot:

Name the tab PowerShell and then right-click within the tab and select Choose
Items. We will see the following screenshot:

Chapter 4

[93]

This will bring up the activity selection dialog. To get access to the PowerShell
activities, we need to navigate to the Global Assembly Cache (GAC). Within the
GAC we can select any one of the following PowerShell activity assemblies:

•	 Microsoft.PowerShell.Activities

•	 Microsoft.PowerShell.Core.Activities

•	 Microsoft.PowerShell.Diagnostics.Activities

•	 Microsoft.PowerShell.Management.Activities

•	 Microsoft.PowerShell.Security.Activities

•	 Microsoft.PowerShell.Utility.Activities

•	 Microsoft.WSMan.Management.Activities

The Global Assembly Cache is located in C:\Windows\
Assembly\GAC_MSIL.

Once the assembly has been loaded, we can choose from the activities found within
the assembly. Selecting an activity will put it into the PowerShell tab within the
Toolbox window:

Windows Workflow in PowerShell

[94]

We have selected all activities in the Microsoft.PowerShell.Core.Activities,
Microsoft.PowerShell.Activities, and Microsoft.PowerShell.Management.
Activities assemblies. Some of these activities include GetCommand, GetModule,
StartJob, and even InlineScript. Now that we have the activities added to the
Toolbox window, we can start to utilize these activities within the workflow. Refer
to the following screenshot:

In our previous Visual Studio Workflow, we were accepting integers and
accumlating a final value. PowerShell workflows are intended not being interacted
with, while they are running. Although we could run our previous workflow on the
command line, we could interact with it, it was because we had no PowerShell-based
activities within the workflow. If we were to add one to the existing workflow an
error would be presented.

Chapter 4

[95]

In this next example, let's take file names as input to the workflow, and then use that
input to output whether the files exist using Test-Path in parallel. The Test-Path
activity is found in the Microsoft.PowerShell.Management.Activities.dll. It is
shown in the following screenshot:

In this workflow you can see that we added a new argument, called filePath, which
accepts an array of strings. These strings are then sent into the ParallelForEach
activity which then passes them to the PowerShell Test-Path activity. Once we save
and import the activity into PowerShell, we can execute it and specify the filePath
parameter using the following commands:

PS C:\> TestPathParallel -filePath C:\inetpub,C:\Users

True

True

Utilizing the built-in PowerShell activities is very helpful as many of the commands
offer a better experience than using simple workflow commands. To take PowerShell
integration into Visual Studio a step further, let's investigate how to expose our
custom PowerShell workflow into Visual Studio.

Windows Workflow in PowerShell

[96]

Adding a custom PowerShell workflow to
Visual Studio
To add a custom PowerShell workflow to Visual Studio, we need to save the XAML
generated by PowerShell to an XAML file. Although there is no built-in function or
cmdlet to do this, it is very easy. Running the following command will output the
XAML that has been generated for a workflow:

PS C:\Users\Adam> (Get-Command MyWorkflow).XamlDefinition["MyWorkflow"]

<Activity

 x:Class="Microsoft.PowerShell.DynamicActivities.Activity_1844550451"

...

As the XAML definition is available right on the command line, we can easily pipe
this into the Out-File cmdlet to write out the XAML definition to a file, which can
be consumed by Visual Studio using the following command:

PS C:\> (Get-Command MyWorkflow).XamlDefinition["MyWorkflow"] |
OutFile –FilePath C:\MyWorkflow.xaml

Now that we have the XAML file saved, we can easily add it to the Visual Studio
Solution Explorer and include it in the project.

Summary
In this chapter we examined the new Windows Workflow integration into
PowerShell. The ability to use Workflow seamlessly within PowerShell offers a
host of new functionality and possible solutions that make an administrator's job
easier. The Workflow engine allows for a simplistic approach to problems which
did not sacrifice functionality. Being able to harness custom workflows within
Visual Studio enables users that are not knowledgeable in PowerShell to access
and work with many of the key cmdlets, or even import custom PowerShell
workflows written by others.

By integrating with Workflow, PowerShell has taken a large step forward in terms
of scalability and re-usability. Enabling a PowerShell user to manage infrastructures
well beyond the ones they currently are capable of. Care should be taken in
understanding the differences between a PowerShell Workflow and a PowerShell
script as they are very different from one another.

In the next chapter, we will learn how PowerShell controls WMI interfaces.

Using the Common
Informational Model

Windows Management Instrumentation (WMI) is an infrastructure built into
Windows which allows for management and automation of the system. WMI is
based on the Common Informational Model (CIM), which helps define objects
within a computer system using a common model. Thus, WMI is Microsoft's
implementation of CIM.

PowerShell exposes ways of querying and controlling the WMI interfaces to make
working with the system easier. Since the first version of PowerShell, cmdlets and
type extensions have existed that have made working with WMI seamless. In the
newest version of PowerShell and the Windows Management Framework, WMI and
PowerShell become even more intertwined. The Windows Management Framework
is an overarching category of systems that both PowerShell and WMI fall under. We
do not simply install PowerShell; we install the Windows Management Framework.
WMI is packaged into this installation as well.

In PowerShell 3.0 it is possible to harness WMI and to utilize the new WMI
constructs, to produce PowerShell cmdlets using native C code. Microsoft has
released a new integrated development environment which extends Visual Studio
to allow for simple creation of WMI providers. The simplified model enables
developers to quickly create providers that can provide both data and invoke actions.

Using the Common Informational Model

[98]

In this chapter we will cover the following:

•	 The CIM IDE that is used to easily create new WMI providers
•	 Create a simple provider and then use PowerShell to create cmdlets based on

metadata about the provider
•	 The differences among WMI cmdlets that have been in previous versions and

experiment with the new cmdlets in this version
•	 The new cmdlets for interacting with CIM classes and instances

Finally, we will take a quick look at the NanoWBEM service which will be available
around the time when Windows 8 is shipped. NanoWBEM is a Linux based
CIM service, which allows for management of machines or devices that are not
running Windows.

Introduction to the CIM IDE
Visual Studio is a very extensible development environment. The core system is
built upon an idea of services that are discoverable and can easily be plugged in and
out. As more services are added to the framework more functionality is exposed.
In Visual Studio 2010 Microsoft made it even easier to extend the IDE. The Visual
Studio 2010 software development kit (SDK), simplified the way in which developers
work with Visual Studio. There are several thousand extensions found on the Visual
Studio Gallery that provide all kinds of different functionality.

To download a trial version of Visual Studio you can visit
http://www.microsoft.com/visualstudio

The CIM IDE is based on this extension model and plugs right into Visual Studio.
Currently, the CIM IDE is available for download from the Visual Studio Code
Gallery. Once the extension is installed we will have access to two new project types
within Visual Studio. Once the new project dialog is open, we see that there is a new
category of project; CIM. The first project type, CIM Authoring, is responsible for
defining the WMI model interface which will be exposed to PowerShell. The second
project type CIM Providers, is responsible for implementing the interface generated
by the first. The following screenshot explains this:

Chapter 5

[99]

In addition to the different project types available in the CIM IDE, there are new
designers, syntax highlighting, and IntelliSense support. In a CIM Authoring project,
the WMI interface is defined using a standard format refered to as the Managed
Object Format (MOF). MOF files are simple attributed C-style source files, that
provide the metadata about the properties, methods, and events exposed by a WMI
provider's objects. The CIM IDE provides syntax highliting and IntelliSense support
for MOF files. The following screenshot shows an CIM_Error MOF file:

The MOF format is a specification designed by the Distributed Management Task
Force (DMTF). The DMTF works to create standards for the distributed management
of computer systems. By having standard ways of communicating within a
distributed organization it is easier to ensure interoperability between systems.

Using the Common Informational Model

[100]

The CIM IDE also offers a simplified, read-only view of the MOF file in a custom
designer. It lists each of the methods, properties, and events defined within a MOF
file. This makes reading MOF files much easier, as there is often much metadata
found within the file that must be interpreted:

By viewing the MOF file in the CIM Explorer view, it is much easier to understand
the purpose of the interface defined in the MOF file. Once we have defined a custom
object type it is easy to have the CIM IDE generate the framework code for us. After
the framework has been laid out, it is our responsibility to implement the different
properties and methods within the CIM Provider project.

Downloading the example code
You can download the example code files for all Packt
books you have purchased from your account at http:
//www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Chapter 5

[101]

Implementing a simple WMI provider
In the following example, we will generate the MOF and build the skeleton for a
provider from scratch. We won't actually implement the provider's internals but we
will see how easy it is to get started creating a provider. Once this is done we will use
the new cmdletization feature found in the WMF to create native PowerShell cmdlets
without having to write any code or scripts to do so. The goal of this provider is to
list the connected network drives and provide a way of disconnecting them. This
section will not be about the code necessary in implementing the actual provider as
this is beyond the scope of this book.

The first step in creating our new WMI provider is to author the MOF, as seen in
the previous section. We need to create a new CIM Authoring project. This can be
done by clicking on the Menu and selecting File and the New Project. Once this
is done, we can add a new MOF file to the project to define our class. The class
we are looking to implement will be called WIN32_NetworkDrive. It will expose
a DriveLetter and Path properties and a method called Disconnect. To create
our first MOF file, right-click on the Project and click on Add and then CIM Class.
Name the file WIN32_NetworkDrive.mof. Another dialog will be shown which
allows us to set several features of the class we are creating. This includes the base
class and numerous attributes of the class, including Experimental, Deprecated, or
DisplayName. This is shown in the following screenshot:

Using the Common Informational Model

[102]

We want our class's superclass to be CIM_ManagedElement. It defines some of the
basic properties that are found on a CIM class. If we use a standard base class found
in the WMI repository, the CIM IDE will automatically generate the MOF file for
that base class. Once our class is created we can begin editing the MOF. The syntax
is very simple. Properties are defined by providing the type name and then naming
them. This is exactly the same syntax you would provide for a typical field found in
a class. Methods are defined by a return type and parameters within parenthesis. The
Disconnect method will not take any parameters:

Chapter 5

[103]

Adding a CIM Provider project
Now that we have the definition for our provider authored, we can generate the code
that will be a framework for the provider implementation. To do this we first need to
create a new project within our solution. Right-click on the Solution in the Solution
Explorer window and click on Add and then New Project and select the CIM
Provider project type. Once we have the project added we can generate the source
code by using the CIM Explorer window. If this window is not currently shown, we
can display it by clicking on the View menu item, navigating to Other Windows and
clicking on CIM Explorer. The CIM Explorer window displays all the classes that
have been defined in our current CIM Authoring project. In our case, we see that the
WIN32_NetworkDrive class is shown in the following screenshot:

The implementation details
We can now generate the code for the implementation of the provider. To do this, we
need to do the following:

1. Select the WIN32_NetworkDrive class.
2. Click on the Generate Code button on the toolbar of the CIM Explorer

window. It appears as two gears.
3. Select the options we wish to use in the Generate Provider window which is

now shown.

Using the Common Informational Model

[104]

The Generate Provider window also lets us select the Project within which we will
be writing the implementation of the provider. In our circumstance, as there is only
one project in which this can be done, the drop-down list already has the project
selected. There is no need to modify any of the default settings for this example.
This is shown in the following screenshot:

Once we are ready to continue we can press OK. The CIM IDE instantly produces
several header and source files in the NetworkDriveProviderImpl project. Opening
the content of one of these files we can see that the entire skeleton for our provider
has been created:

Chapter 5

[105]

The implementation details of a provider are beyond the scope of this book. A
developer could write the C or C++ code necessary to complete the provider and
compile it. Once the provider was complete, we could then move into PowerShell
to register the provider and automatically create cmdlets based on the methods
exposed by the object model.

Generating PowerShell metadata
The last step we need to take is to generate metadata that PowerShell can consume to
automatically create cmdlets based on the provider's object model. This can be done
through the following steps:

1. Right-click on the WIN32_NetworkDrive class in the CIM Explorer window.
2. Click on the Add PowerShell Metadata option in menu.
3. The Add PowerShell Metadata window will be shown where we can set the

settings for the metadata file.

Notice in the following screenshot, that the file name generated is a CDXML file. A
CDXML file is an XML structured file which contains all the metadata necessary for
PowerShell to generate cmdlets for the provider:

Using the Common Informational Model

[106]

Once we click on Add in the window, a new file will be added to the project. We
will use this file later to cmdletize the provider. The file created by this dialog is
empty and it requires us to define the mappings between cmdlets and the WMI
objects. By clicking on the PowerShell Metadata file in the CIM Explorer window
we can utilize the new editor to create this mapping. The window is shown in the
following screenshot:

The editor allows us to specify cmdlets for querying existing instances, for both
instance based and static methods, and even enumeration values. This requires
some knowledge of good cmdlet design but is very straightforward. Once we
have mapped the properties of the CIM class to the parameters or the methods to
the cmdlets, we will then have a CDXML file that contains the information that is
necessary for creating cmdlets. We will see how to do this in the next section.

In order to create a cmdlet which queries the existing instances of the
Win32_NetworkDrive class, we will want to add query parameters in the
PowerShell metadata details. The property name drop-down allows us to select
the properties of the CIM class and map them to a cmdlet property. To create
a method we can right-click on the Instance Method section and map the
Disconnect CIM method to a cmdlet Disconnect-Win32_NetworkDrive.

Chapter 5

[107]

The product of a CIM Provider project is a DLL which will then be loaded into
WMI as a provider and the CDXML file we just generated. The next section will
focus on registering such a provider to offer the newly created functionality to WMI
consumers, including PowerShell.

Registering a WMI provider
Registering a WMI provider is very simple in the new version of the Windows
Management Framework. There is a new executable which has been added to
aid in registration. It offers a PowerShell-like syntax. The executable,
Register-CimProvider, is stored within the system directory, so it can easily
be run just by typing its name. To learn more about how to use the program,
use the Help parameter. All the parameters will be listed with a description of
what each one does. This can be done using the following command:

PS C:\> Register-CimProvider –help

The output is as shown in the following screenshot:

When registering a CIM provider, there are three parameters that are required
by Register-CimProvider. These include Namespace, Path, and ProviderName.
The Namespace parameter defines within which namespace the provider will be
registered. Namespaces are groupings of functionally similar providers that are
referenced by a backslash separated path beginning with the Root. For example,
there is a Root\Virtualization namespace which contains providers for managing
Hyper-V machines. The Path parameter is used to specify the path to the DLL
which was generated in the previous section. Finally, the ProviderName parameter
is a unique name given to the provider. It should be easily recognizable what the
provider is intended to expose by its name. To register our new CIM provider we
will use the following command. It is required that we run the PowerShell console
as an administrator due to security restrictions of the WMI registry. Attempting
to run Register-CimProvider in a prompt which is not elevated will result in an
Access Denied error:

Using the Common Informational Model

[108]

PS C:\> Register-CimProvider -Namespace Root\WIN32 -ProviderName
WIN32NetworkDriveProvider -Path "NetworkDriveProviderImpl.dll"

Successfully registered the provider.

Once our provider is registered we can begin to access it via PowerShell. We can first
verify that registration was a success by returning the definition of our class. This can
be done using the Get-CimClass cmdlet as follows:

PS C:\ > Get-CimClass -ClassName Win32_NetworkDrive -Namespace Root\WIn32

 NameSpace: ROOT/WIN32

ClassName Methods Properties

--------- ------- ----------

WIN32_NetworkDrive {Disconnect} {Caption,Description...}

As we can see, the class has been successfully registered in the Root/Win32
namespace. It has also returned the correct methods and properties, as defined
in our MOF file in the previous section. During the registration process a fully
defined MOF file is generated. If we examine the file system next to where the DLL
for the provider is situated, we will see that a MOF file with the same name as the
provider has been generated. If we wish to unregister the provider, we can use the
GenerateUnregistration parameter on Register-CimProvider. This generates a
MOF file which can be used to unregister the provider.

To unregister a provider using the unregistration MOF file we would utilize the
mofcomp executable which comes with Windows. The mofcomp parses and compiles
MOF files before adding them to the WMI repository. If we provide mofcomp with
a path to the unregistration MOF file, it will remove the class from the Root/Win32
namespace. This is done using the following commands:

PS C:\> mofcomp "WIN32NetworkDriveProviderUninstall.mof"

Microsoft (R) MOF Compiler Version 6.2.8158.0

Copyright (c) Microsoft Corp. 1997-2006. All rights reserved.

Parsing MOF file: C:\ WIN32NetworkDriveProviderUninstall.mof

MOF file has been successfully parsed

Storing data in the repository...

...

Done!

PS C:\ > Get-CimClass -ClassName Win32_NetworkDrive -Namespace Root\WIn32

Get-CimClass : NOT_FOUND

At line:1 char:1

+ Get-CimClass -ClassName Win32_NetworkDrive -Namespace Root\WIn32

Chapter 5

[109]

Automatically creating provider cmdlets
One of the major advantages to the new provider model and the CIM IDE is that the
metadata created by Visual Studio can be directly consumed by PowerShell. Instead
of having to write functions that expose the functionality, or by using the generic
CIM or WMI functions, we can just create specific functions for our provider. In
the previous section we created PowerShell metadata as a CDXML file. This file is
responsible for generating the functions. In order to generate the functions, we just
import the metadata file using Import-Module as follows:

PS C:\> Import-Module "C:\PS_WIN32_NetworkDrive.cdxml" -Verbose

VERBOSE: Importing function 'Disconnect-WIN32NetworkDrive'.

VERBOSE: Importing function 'Get-WIN32NetworkDrive'.

Now that they are imported we can use them just like we would any other
function. If we investigate the syntax of the function we will also see that the
parameters that we specified in the CIM IDE are exposed. This is done by using
the following command:

PS C:\> Get-Help Get-WIN32NetworkDrive

This produces output as shown in the following screenshot:

The auto-generated function even exposed the CimSession parameter, so that we
can tie it in with a CIM session. We will investigate how this is useful in a later
section. We can also see that the DriveLetter parameter is available to us. This
enables us to filter the WIN32_NetworkDrive classes by the DriveLetter parameter.
And we didn't have to write any PowerShell script to do this. As the CDXML
file is processed with the Import-Module cmdlet, we can add it to modules as a
RequiredModule to offer even more functionality to our modules.

Using the Common Informational Model

[110]

Why new cmdlets to interact with WMI?
The WMI cmdlets in the previous version of PowerShell were very handy. Some
of the most useful modules developed have been based on WMI. The biggest
reason for developing new cmdlets is that the existing cmdlets are designed to only
interact with WMI. Rather than simply interacting with Windows based systems,
the CIM cmdlets are intended to communicate via the standard CIM protocol.
This is why there are several cmdlets that are seemingly exactly the same as their
WMI predecessor. The idea is to expose a standard cmdlet which will be able to
interact with Windows systems, Linux devices, or other machines running some
implementation of a CIM service. This enables Windows administrators to manage
more than just Windows.

In addition to the ability to traverse different operating systems, the CIM cmdlets
can also take advantage of the WSMan protocol when communicating with remote
machines. This helps to alleviate firewall issues that are commonly encountered
when using DCOM. Each of the cmdlets supports a Protocol parameter which
allows us to specify either DCOM or WSMan as the communication protocol.

Differences between the CIM and
WMI cmdlets
The CIM cmdlets are very similar to the WMI cmdlets that have been in PowerShell.
For example, we can accomplish all the same things that we could by using the
Get-WmiObject class with the Get-CimInstance class.

Both of the cmdlets even offer the same filtering mechanism found in WMI. As we
investigate further, we will see that one of the biggest differences between the CIM
and WMI cmdlets is that they handle remote connections differently. In Windows 8,
the WSMan service will be on by default. Rather than having to configure remoting
via PowerShell, this service will be the end point of choice. In the past WMI has
communicated over the Distributed Component Object Model or DCOM. DCOM
is notorious for being slow and synchronous. It is also considered a security concern
by some. The WSMan protocol and service is a much better network stack. It offers
superior performance and security. This allows PowerShell, and other services
using WSMan, to scale much better to larger environments. It also allows for
communication beyond the Windows stack.

Chapter 5

[111]

The difference between the CIM cmdlets and the WMI cmdlets is that the former
communicate via both the WSMan and DCOM protocols and the latter communicate
only via DCOM. In the next section we will investigate how to configure remote
sessions with the new CIM cmdlets.

Cmdlet differences between CIM and WMI
In addition to the Get-CimClass cmdlet, there are several other new CIM based
cmdlets. We can get a full list by typing the following command:

PS C:\> Get-Command -Module CimCmdlets

This gives the list as follows:

Another obvious difference between the two sets of cmdlets is that there are many
more CIM cmdlets than there are WMI cmdlets. We can get a list of WMI cmdlets by
typing the following command:

PS C:\> Get-Command *WMI* -Type Cmdlet

The list of WMI cmdlets is as follows:

Using the Common Informational Model

[112]

Furthermore, the cmdlets found in the CIM module, are different in terms of
parameters and sometimes intent. Even though several of the cmdlets seem
to overlap in functionality, they are used in different ways. We can see this by
comparing the Invoke-WmiMethod and Invoke-CimMethod cmdlets. They are
intended to invoke one of the methods on a particular WMI object. For example,
if we wanted to start a new process, such as the PowerShell command line, we
could utilize the Create method of the Win32_Process class. To do this with the
Invoke-WmiMethod cmdlet, we would do the following:

PS C:\> Invoke-WmiMethod -Class Win32_Process -Name Create -ArgumentList
"powershell.exe"

The Create method takes several parameters, the first being the command line
for the process to start. In this example we are passing in the command line
powershell.exe. As the PowerShell command line executable is on the default
search path for Windows, the process will start.

For processes that are not on the default search path, it is
required to provide the full path name.

In PowerShell 3.0 the same can be accomplished using the Invoke-CimMethod
cmdlet. The difference is in the name of the parameters and the type of the
arguments list. Notice that the Invoke-WmiMethod accepts an array for a parameter
list. This works fine unless we want to specify only a particular parameter and not
all the parameters in order. For example, if we look at the definition of the
Win32_Process Create method we can see it takes more than just a single
parameter as follows:

uint32 Create(

 [in] string CommandLine,

 [in] string CurrentDirectory,

 [in] Win32_ProcessStartup ProcessStartupInformation,

 [out] uint32 ProcessId

);

Chapter 5

[113]

If we wanted to specify more arguments for the Create method in using the
Invoke-WmiMethod cmdlet, we would simply add those arguments to the array
in order. One of the downfalls of this type of positional specification is that
we have to specify each parameter, even if we don't intend on using it. If we
wanted to specify the ProcessStartupInformation parameter, we would also
have to specify the CurrentDirectory because it is positioned in front of the
ProcessStartupInformation parameter. This is because Invoke-WmiMethod
finds parameters by position and not by name. The Invoke-CimMethod cmdlet
works differently, as shown in the following commands. It accepts a hash table as a
parameter list, thus allowing us to just specify the parameters we want to use:

PS C:\> Invoke-CimMethod –ClassName Win32_Process –MethodName Create –
Arguments @{CommandLine="powershell.exe"}

Although the syntax is a bit more typing, it allows for much more control over which
parameters are specified when the method is invoked. The cmdlets look the same on
the surface but there is enough change to warrant studying the differences.

Registering CIM events
Another cmdlet which maps between the CIM cmdlets and WMI cmdlets is the
Register-WmiEvent cmdlet and the Register-CimIndicationEvent. Both of these
cmdlets aim to allow us to be signalled when a particular WMI event has taken place.
Once signalled, we can execute a script block which takes a particular action.

As an example we can set up an event listener which will output the name of
a process whenever one is started. For this example, we will have to run the
PowerShell command line as an administrator as follows:

PS C:\ > Register-WmiEvent -Query "Select * FROM Win32_ProcessStartTrace"
-Action { Write-Host ($Event.SourceEventArgs.NewEvent.ProcessName) }
-SourceIdentifier ProcessListener

This registration command will output the name of the process whenever a process
is started. The SourceIdentifier is used to find the registered event later. This
makes it easier for us to remove the event later.

Note the object model found within the script block. We need
to drill down through the set of properties just right to get to
the ProcessName property.

Using the Common Informational Model

[114]

To test it out we can start notepad using the Start-Process cmdlet. Once Notepad
is started, the event will signal and we will see the process name written to the host
as shown in the following commands:

PS C:\> Start-Process Notepad

PS C:\> notepad.exe

This is possible through the CIM cmdlets. In order to accurately test the
functionality, we should unregister the previous event that we set into place.
This can be done using the Unregister-Event cmdlet as follows:

PS C:\> Unregister-Event ProcessListener

Now that the previous event listener has been removed, we can add a new one
using the Register-CimIndicationEvent. The syntax for this cmdlet is almost
identical to that of the previous example with the WMI cmdlet. The following
commands show this:

PS C:\ > Register-CimIndicationEvent -Query "Select * FROM Win32_
ProcessStartTrace" -Action { Write-Host ($Event.SourceEventArgs.NewEvent.
ProcessName) } -SourceIdentifier ProcessListener

The event listener can even be unregistered the same way as the previous WMI
event using the exact same syntax as used in the previous examples by using the
Unregister-Event cmdlet.

Updating CIM instances
The final comparison to outline is that between the Set-WmiInstance and Set-
CimInstance cmdlets. It would seem that the goal of both of these cmdlets is to offer
a way to update instances of properties of WMI objects. We will see why this isn't
necessarily the case. Both of the cmdlets accept a hash table of names and values to
set particular properties on a WMI object. If, for instance, we wanted to set a new
Environment variable, we could use the Set-WmiInstance cmdlet as follows:

PS C:\> Set-WmiInstance -Class Win32_Environment -Arguments @{Name="TestV
ar";VariableValue="MyValue";UserName="Adam" }

Chapter 5

[115]

This produces the hash table as shown in the screenshot:

In order to actually use the Environment variable we would have to restart the
current PowerShell command prompt. The variable will even be present in the
Environment variables window found in the Windows System Properties dialog.
This is a strange way to use a Set cmdlet. Rather than actually setting the properties
on an existing instance of a class, it has created a new instance of the Environment
variable class. The CIM cmdlets do not behave this way. The Set-CimInstance does
not even expose a way of specifying the class name. It requires that we use the
Get-CimInstance cmdlet to return the existing CIM instance that we wish to set.

To retrieve the Win32_Environment instance that we just created we could use the
Get-CimInstance cmdlet with a filter on the name as follows:

PS C:\> Get-CimInstance –ClassName Win32_Environment –Filter
'Name="TestVar"'

Name UserName VariableValue

---- -------- -------------

TestVar DRISCOLL-DESK\Adam MyValue

As we can see it returned the same value we just set using the WMI cmdlet. If we
wanted to modify the value, we would then pipe the output of the Get-CimInstance
to the Set-CimInstance cmdlet. The Properties parameter on Set-CimInstance
accepts a hash table, just like the Arguments of the Set-WmiInstance:

PS C:\> Get-CimInstance –ClassName Win32_Environment –Filter
'Name="TestVar"' | Set-CimInstance –Property @{Value="NewValue"}

PS C:\> Get-CimInstance –ClassName Win32_Environment –Filter
'Name="TestVar"'

Using the Common Informational Model

[116]

The output is as shown in the following screenshot:

In this circumstance, the Set-CimInstance behaves much more like other Set
cmdlets found in PowerShell.

One final thing to note is the difference between the output of the CIM and WMI
cmdlets. Rather than returning a large list of the properties of the CIM instances, a
much more succinct, readable format is returned. This is because the objects returned
by the CIM cmdlets are actually of a different type than that of the WMI cmdlets. The
WMI objects are returned as System.Management.ManagementObject and the CIM
cmdlets return Microsoft.Management.Infrastructure.CimInstance. Refer to
the following commands:

PS C:\> Get-WmiObject –Class Win32_Environment | Get-Member

TypeName: System.Management.ManagementObject#root\cimv2\Win32_Environment

...

PS C:\> Get-CimInstance -ClassName Win32_environment | Get-Member

TypeName: Microsoft.Management.Infrastructure.CimInstance#root/cimv2/
Win32_Environment

In addition to modifying the existing functionality found in the WMI cmdlets for
interacting with CIM systems, Microsoft has also extended the reach of the CIM
capabilities. We will see in the next section what new functionality is available to
us by way of WMI and CIM.

Exploring the new CIM cmdlets
In the previous section we examined what was different between the existing
WMI cmdlets and the new CIM based cmdlets. In this section we will look at what
additional functionality has been added to the CIM module which does not appear
in the WMI cmdlets.

Chapter 5

[117]

CIM sessions
Using the WMI cmdlets, a connection was made for each command. If we needed
to specify credentials it would need to be done every time the WMI cmdlet was
invoked. This leads to a lot of extra typing and work. This can also make it difficult
to work with a large group of computers. Although possible with remoting, there
is a new mechanism which the CIM cmdlets can harness. A CIM session is a lot like
a remote session started with New-PSSession. The big difference is that it is not
designed to be used exclusively by PowerShell. Instead it is intended to be used only
upon the CIM framework. This enables the session type behavior to traverse more
than just Windows machines.

To get a new CIM session started we can use a combination of the New-CimSession
cmdlet and the New-CimSessionOption cmdlet. You will notice that this is very
similar to a New-PSSession and New-PSSessionOption cmdlets. Maintaining
the same type of structure makes learning the new cmdlets much easier. The
New-CimSession cmdlet has parameters that set up the basics of the CIM
session such as computer name, credentials, and authentication type. The
New-CimSessionOption has parameters for more advanced configuration of
the session including protocol type and certificate settings.

If our computer is not part of the domain we will see a problem by utilizing the
New-CimSession without any additional configuration. By default, the
authentication type is Kerberos, which only works in a domain environment.
To be able to connect to a workgroup computer we need to configure WSMan
on the local machine to either accept HTTPS connections or add the host we
wish to connect to the trusted hosts list.

To add a computer to the list of the trusted hosts, we can run the following
command. Please note that this list should be restricted to a short list of machines as
they may not be authenticated.

PS C:\> winrm set winrm/config/client '@{TrustedHosts ="driscoll-
laptop"}'

Now it is possible for my driscoll-desk machine to connect to my laptop without
any actual authentication. This obviously is not the ideal situation for any type
of production environment. In this circumstance, we can just use Kerberos to
authenticate against the domain which both machines are a part of. To get a simple
new CIM session started we can use the New-CimSession cmdlet by itself as follows:

PS C:\> New-CimSession -ComputerName Driscoll-laptop

Id : 1

Name : CimSession1

Using the Common Informational Model

[118]

InstanceId : f415359f-d392-4a2e-80cc-5043ec128549

ComputerName : Driscoll-laptop

Protocol : WSMAN

The new CIM session is now open and we can begin utilizing it to issue commands
to the remote machine. Notice that by default, CIM sessions utilize the WSMan
protocol instead of DCOM. The type of communication mechanism can be changed
using the options provided by the New-CimSessionOption cmdlet. To utilize this
session with another one of the CIM cmdlets we can specify the name or ID on the
CimSession parameter of the other CIM cmdlet. For example, if we wanted to list to
view the BIOS information on the remote machine, we could do the following:

PS C:\> Get-CimInstance –ClassName Win32_BIOS –CimSession 1

This gives the following output:

To view all open sessions in the current PowerShell command prompt, we can utilize
the Get-CimSession cmdlet. It will return all open CIM sessions. It also lets us filter
by computer name, ID, or instance ID as follows:

PS C:\> Get-CimSession

Id : 1

Name : CimSession1

InstanceId : f415359f-d392-4a2e-80cc-5043ec128549

ComputerName : Driscoll-laptop

Protocol : WSMAN

To close our CIM session we can utilize the Remove-CimSession cmdlet. It takes
pipeline input. It should be used in conjunction with the Get-CimSession cmdlet.
Removing a CIM session will close the communication between the two machines
and this is done using the following command:

PS C:\> Get-CimSession –Id 1 | Remove-CimSession

Chapter 5

[119]

Creating new CIM instances
When we looked at the differences between the WMI cmdlets and the CIM cmdlets
we saw that the Set-WmiInstance cmdlet behaved almost like a New-WmiInstance
cmdlet (which does not exist). The CIM cmdlets offer a cmdlet which is intended to
do this, and is correctly named. The New-CimInstance cmdlet is used for creating
new instances of CIM classes that support this type of creation. We can use the
previous example of the Environment variable to illustrate this point. Instead
of calling Set-CimInstance, which we saw previously is intended for setting
properties on existing instances, we will use the New-CimInstance cmdlet.

The New-CimInstance cmdlet accepts a class name and a hash table of properties to
enable the creation of these instances. To create a new Environment variable we can
do the following:

PS C:\> New-CimInstance –ClassName Win32_Environment –Property @{Name="Te
stVar";VariableValue="MyValue";UserName="Adam" }

Name UserName VariableValue

---- -------- -------------

TestVar DRISCOLL-DESK\Adam MyValue

The New-CimInstance cmdlet is just as easy to use as the Set-WmiInstance we used
earlier. In addition to creating CIM instances with a simple cmdlet, we can remove
them as well, with a similar, cmdlet-based approach.

Working with associated classes
One concept in CIM is the idea of associated classes. Classes can be related to each
other. Instead of merely having a simple property, for example a service name, a
CIM class may have a complex object which is related to it. In the previous version
of PowerShell it was possible to retrieve associated classes but only by utilizing
the complex WMI Query Language (WQL), which the WMI cmdlets were capable
of using. With the new CIMCmdlets module, comes a new cmdlet, the Get-
CimAssociatedInstance cmdlet. This greatly simplifies how we have got associated
references to the classes we are retrieving.

Using the Common Informational Model

[120]

The easiest example is that of a process. A process is composed of several
components. It runs on an operating system, under the context of a particular user
and is often made up of one or more files. Each of these particular properties could
not effectively be displayed in a single string on the Win32_Process object. Instead,
they are referenced through different classes that are linked. We can see this in the
following screenshot:

CIM_Process

CIM_Thread

CIM_DataFile

CIM_OperatingSystem

The Win32_Process class is said to inherit from the CIM_Process class. This means
that all the properties, methods, and associations that the CIM_Process exposes, the
Win32_Process class exposes as well. They are related like a fruit is to an apple. Just
as the apple is a more specialized fruit, the Win32_Process is a more specialized type
of CIM_Process. It offers most specialized properties that pertain to only a Windows
based process, rather than a more general CIM process:

Win32_Process

Win32_LogonSession

Win32_NamedJobObject

Win32_ComputerSystem

As we can see from the screenshot, the Win32_Process is linked to the Win32_
ComputerSystem and Win32_LogonSession. The CIM_Process is also linked to the
CIM_Thread, CIM_DataFile, and CIM_OperatingSystem. As the Win32_Process
is really just a subset of the CIM_Process, which means it is also linked to the CIM_
Thread and CIM_DataFile classes. The icon denoted by the two arrows between the
two empty boxes is the association class. Association classes are the glue that holds
together the two classes on either side of the screenshot. As both the Win32_Process
and Win32_LogonSession are technically independent of each other, CIM requires
that we add a linking class in between so that we can associate the classes together.
The linking class is what we are particularly interested in, when using the new CIM
associated instance cmdlet.

Chapter 5

[121]

In order to query these particular items in .NET or previous versions of PowerShell,
we would need to write a complex WQL query. In PowerShell 3.0 this is no longer
the case. Instead we can utilize the Get-CimAssociatedInstance cmdlet. It accepts
pipeline input from the Get-CimInstance cmdlet and allows us to retrieve the
linked classes. If we want to get the associated Cim_DataFiles that the PowerShell.
exe process is currently using, we can do the following:

PS C:\> Get-CimInstance –ClassName Win32_Process –Filter 'Name =
"PowerShell.exe"' | Get-CimAssociatedInstance –Association
Cim_ProcessExecutable | Select-Object Name,Version

This produces the following list:

Notice that when calling the Get-CimAssocaitedInstance cmdlet, we did not use
the Cim_DataFile class name. We instead use the class which links the two together;
the glue. The Cim_ProcessExecutable class is an association class which links the
two classes together. As the Cim_DataFile can be used by more than just processes,
it is necessary to create a linking class.

There are several ways to query which associations a class may have. To do it in
PowerShell we can use the Get-WmiObject cmdlet.

Using the Common Informational Model

[122]

NanoWBEM
WMI has always been about managing Windows machines. Although the system
was built on the foundation of the CIM standard, it was not possible to manage
non-Windows CIM machines. Included with the Windows Management Framework,
NanoWBEM will be a new service designed by Microsoft, to run on Linux computers
or other devices to allow for management via the PowerShell CIM cmdlets. This is a
huge leap forward for Windows administrators, because it allows us to use a central
management tool to work in an infrastructure that is growing more complex
and distributed.

Summary
The new CIM methodology which Microsoft has taken is a good route for the end
user. Rather than being solely tied to Microsoft Windows, it is now possible to use
Windows based management tools such as PowerShell, to step into the world of
Linux. As we saw in this chapter, the new WMI v2 provider model and CIM IDE
make developing WMI solutions much easier. The automatic cmdletization feature
make working with our newly minted providers easier than ever. Time to market is
greatly reduced because of the simplified model and tooling now available.

We also explored how the new CIM cmdlets go far beyond what the basic WMI
cmdlets did previously. We examined the differences and similarities between
the two sets of cmdlets. Finally, we took a quick look into NanoWBEM, the Linux
based CIM implementation provided by Microsoft to aid in management of systems
outside the Windows world.

In the next chapter, we will take a look at the new PowerShell Web Access and
Integrated Scripting Environment that are available in Windows 8 and the Windows
Management Framework.

New and Improved
PowerShell Hosts

In PowerShell 2.0, there were only two ways to access it out of the box: through
the command prompt, PowerShell.exe, or through the PowerShell Integrated
Scripting Environment (ISE). On Windows Server the ISE was not even enabled
by default and had to be enabled through a separate feature. The command prompt
is typically the first stop for many users as it is simple and efficient. It allows us
to quickly execute commands that we do not have to persist. Whenever users are
looking to write something more than just a couple of lines and are looking to save
their scripts, the ISE is the obvious choice.

In addition to the built-in PowerShell hosts, there are tons of third party PowerShell
tools available to write scripts, create user interfaces, or execute command line
operations. In PowerShell 3.0, Microsoft enhanced the built-in tooling. Not only
did they enhance the ISE to be more robust and offer features found in most of the
other script editors, but also in Windows 8 they have added a new feature to host
PowerShell within the browser.

With the proliferation of mobile devices this comes as a welcome addition. Often
administrators find themselves having to access resources, while having limited
network access, or without hardware that is capable of running PowerShell. In
this chapter we will take a look at the new PowerShell Web Access feature of
the Windows Server 2012 to see what it offers. We will then dive into the new
enhancements to the PowerShell ISE that makes authoring scripts even easier.

In this chapter we will cover:

•	 Installation, configuration, and usage of the new PowerShell Web Access
feature of Windows Server 2012

•	 New features and enhancements to the PowerShell ISE

New and Improved PowerShell Hosts

[124]

Installing the Windows PowerShell Web
Access feature
The first step in using the Windows PowerShell Web Access is installing it. Windows
Server 2012 does not have the Windows PowerShell Web Access feature enabled by
default. We will have to enable the feature using the new Server Manager. The Server
Manager has been redesigned to give a better dashboard view of the local server or
distributed servers we want to manage. There is a new All Servers view which gives
a better dashboard view of all the servers that are managed from the Server Manager.
In order to simply configure the local server, there is a Local Server view. It provides
a look into the properties, events, services, performance, and features of the server. It
makes it much easier to discover information and manage the server without having
to dig through a multitude of wizards and control panel applets. Each of the installed
roles shares a similar view as the server dashboard as well, as seen in the following
screenshot. The roles themselves report performance, events, and services:

There are a few steps involved in installing and configuring the PowerShell Web
Access. The first step is to install the Web Server (IIS) role. The PowerShell Web
Access is a feature of the Web Server role. The Internet Information Services
(IIS) will be responsible for hosting the web site. To install this role we need to
step through the Add Roles and Features Wizard. This wizard can be accessed by
navigating to the Local Server pane, clicking on the Manage drop down menu and
selecting the menu item Add Roles and Features.

Chapter 6

[125]

As we step through the menu, the first option we need to select is whether we
want the feature- or role-based installation or the scenario-based installation. The
scenario-based installation is only used for Remote Desktop Services so we need
to select the Role-Based or Feature-Based Installation type. On the next page of the
wizard that is Server Selection, we have the option to select one or more servers
from our server pool. A server pool is a grouping of servers added to the Server
Manager through the Add Servers option found in the Manage drop down menu.
At this step we could configure the Web Server role and the PowerShell Web Access
feature on any number of servers within the pool. As we are only looking to manage
the current server we can simply click on next.

It is also possible to install the roles and features to a Virtual Hard Disk (VHD). We
will choose not to do this now and instead merely install to the local server which we
are managing. If nothing was changed during this page of the wizard we can simply
move on. Now we need to select the Web Server (IIS) role found in the list of roles.
This will allow the local server to host web applications. It is only required to install
the Management Tools and the Web Server sub-roles found beneath the Web Server
(IIS) role. This is shown in the following screenshot. Once checked we can advance
to the Features page:

New and Improved PowerShell Hosts

[126]

On this page we need to select the Windows PowerShell Web Access feature. When
this feature is installed, it will lay down the necessary pieces to install, configure, and
host the web access. This is shown in the next screenshot:

We will be prompted to enable several other features if they are not already installed.
These include features such as .NET. Finally, we can click on the Install button to
install the pieces necessary for Window PowerShell Web Access. The pieces will not
actually be installed into IIS. We will need to further configure the feature after it has
been successfully installed.

In addition to enabling the feature through Server Manager, we can also utilize the
Server Manager PowerShell module. It contains a cmdlet that can install features.
The same steps taken previously could be replicated using the following cmdlet line:

Install-WindowsFeature –Name Web-Server, WindowsPowerShellWebAccess

PowerShell will need to be elevated by selecting the Run As Administrator option.

Chapter 6

[127]

Configuring the Windows PowerShell
Web Access
In the previous section we looked at what it would take to install the roles and
features necessary to run the PowerShell Web Access. This alone does not fully
configure the Web Access for use. We need to take some additional steps to install
the correct pieces into the Web Server and configure it to use the Secure Socket
Layer (SSL) to ensure that the web site traffic is fully encrypted.

Instructions on how to configure the PowerShell Web Access can be found
in the feature's installation directory. This directory is %systemroot%\Web\
PowerShellWebAccess\wwwroot\. Simply type the preceding path into the
address bar of a Windows Explorer window to navigate to it.

To install the PowerShell Web Access web application we can utilize the
PowerShellWebAccess module. This module contains cmdlets for installing
PowerShell Web Access and configuring user, computer, and configuration
authorization. To quickly set up a PowerShell Web Access instance we can use
the following command:

PS C:\> Install-PSWAWebApplication –UseTestCertificate

PowerShell Web Access only runs over HTTPS and thus requires a certificate. To
set up a test certificate we can utilize the UseTestCertificate switch parameter
as shown in this command. Once this command completes we will have a new
application pool and website created for PowerShell Web Access.

Authorizing users
The next step is to authorize access for particular users, computers, and
configurations. This can be accomplished using the PSWAAuthorizationRule
cmdlets. To create a new rule we can utilize the command in the following
screenshot:

Notice that wildcards are allowed. The authorization rule in this command will
allow any user attempt to connect to any computer and/or configuration. Note
that depending on the configuration of the target machine, the user may still not
have access to it. Additional cmdlets are available for listing, removing, and testing
authorization rules.

New and Improved PowerShell Hosts

[128]

Accessing the PowerShell Web Access
Once we have finished installing and configuring the PowerShell Web Access we
should be able to navigate to the URL in any web browser. To ensure everything is
working correctly, launch Internet Explorer and navigate to https://localhost/
pswa (assuming that you installed the web access role on the local system that you
are running Internet Explorer from). We should see the following screenshot:

Internet Explorer will complain that there is a certificate error. This is because we
used a self-signed certificate. To fix this we have to add the certificate to the personal
certificate store.

The web access can be used to connect to any computer which has remoting
enabled. It is necessary to specify the computer name when logging in. In addition
to specifying a computer name there are a whole host of additional options that can
be specified. These options are found in the Optional Connection Settings section.
Some of these options include the session configuration name, the authentication
type, whether to use SSL and the ability to specify alternate credentials. Any
PowerShell-enabled computer with remoting enabled can benefit from the web
access. The ability to specify a configuration name allows us to control the experience
the user will have, when connecting to the remote machine.

Chapter 6

[129]

It is even possible to connect to machines running PowerShell v2.0. This is very
beneficial for organizations that may not be able to adopt Windows 8 or PowerShell
3.0 as quickly as others. It is possible to stand up a single PowerShell Web Access
server to service the needs of a whole collection of computers within an organization.

Working with the PowerShell Web
Access console
Once we are logged into the web access console we will see a familiar blue console.
The console looks and behaves very much like the standard Windows PowerShell
console. Refer to the following screenshot:

Tab completion can be accomplished with either a press of the Tab button or a click
on the following icon:

New and Improved PowerShell Hosts

[130]

Midline tabbing does not work in the web access console.
Instead of expanding it simply does nothing. It will not
delete the rest of the line.

Pressing the Esc, Tab, up and down arrow keys on a computer with a regular
keyboard will work, but this probably will not work on a mobile device. The
history buttons, as shown in the following image, provide a touch-sensitive
way of doing this.

There is also a Logoff button in the lower right-hand corner of the web page.
This will terminate the remote session and bring us back to the login panel
where we first started.

With a quick check of the host, we can see that the host is of the type
ServerRemoteHost. This can be done using the following commands:

PS C:\> $Host

Name : ServerRemoteHost

Version : 1.0.0.0

InstanceId : 93ba397b-114d-4cc4-ba09-54b01538a5ad

UI : System.Management.Automation.Internal.Host.
InternalHostUserInterface

CurrentCulture : en-US

CurrentUICulture : en-US

PrivateData :

IsRunspacePushed :

Runspace :

Additional input and output
The web access console supports all the standard input and output cmdlets
that are available in the usual PowerShell host. These include Write-Host,
Write-Progress, Write-Error, and so on. Write-Host even exposes the ability
to change the background and foreground colors just like it does in the desktop
PowerShell consoles.

Chapter 6

[131]

A custom progress dialog is also integrated into the console which presents a nice
indication of long running processes:

The web access even allows for entering credentials in a secure fashion. Rather than
typing, plain text characters are masked by a dot.

It is recommended to run the PowerShell Web Access over
HTTPS, because if someone or something was listening to the
traffic between the page and the local machine, our password
would be clear text.

Multiline statements
There is a difference between the regular PowerShell console and the web access
console when it comes to multiline statements. When working with the desktop
console, multiline statements are achieved by opening a statement block and
pressing Enter. The console recognizes that the statement is intended to continue.
Once we close the statement block and press Enter twice, the entire command will be
executed. If, for instance, we were trying to loop through a list of services and pause
them, we could do the following:

PS C:\> Get-Service PN* | ForEach-Object {

>> $_.Pause()

>> }

Notice that the PowerShell console allows us to continue the line, after we have
opened the statement using the open curly brace ({). If we attempt to do the same
thing in the web access console we will find that an error is shown as follows:

PS C:\> Get-Service PN* | ForEach-Object {

Missing closing '}' in statement block.

New and Improved PowerShell Hosts

[132]

This is because the web access console treats multiline statements differently.
Rather than asking for additional input after pressing Enter, the input box is simply
multiline enabled. This allows us to enter multiple lines by pressing Shift + Enter
to move to the next line. This means we can simply type the entire command right
into the input box. It is also possible to copy and paste multiline commands into the
textbox. The following screenshot shows an example of a multiline script that pauses
services with names starting with PN:

Enhancements to the PowerShell ISE
The PowerShell ISE has been in PowerShell since the second version. In the previous
version it provided syntax highlighting and debugging capabilities. The ISE was
never quite as full of features as some of the third party scripting applications
available. In the newest version of PowerShell, Microsoft has included an ISE which
is much more feature rich. In this section we will go over the enhancements to the
ISE that make it a much more viable tool for working with PowerShell scripts.

Intellisense
In the previous version of the PowerShell ISE the script editor supported tab
completion. When we started to type a command, we could have the ISE behave just
as it would within the PowerShell command prompt. Each subsequent tab would
cycle through the available options and we could eventually narrow down what
we were looking for. Although this is convenient, it is often nice to have a more
rich experience when working with a more full featured user interface. In Visual
Studio for example, when different portions of code such as variables are typed, the
development environment will display a drop-down list of available options to the
user. This allows us to see more than just a single item at a time.

The PowerShell 3.0 ISE now offers this type of support. If we were to start typing
a cmdlet name, the ISE will drop down a list of available cmdlets that match the
pattern that we have already typed. For example, if we started typing the following:

Invoke-

Chapter 6

[133]

Once the hyphen was inserted, the ISE would then drop down a list of available
Invoke cmdlets or functions that match the verb. They are in alphabetic order. If we
continue to type, the Intellisense will narrow down the list even further, until we
find what we are looking for. In addition to showing the names of the cmdlets or
functions, the ISE will also give a tool-tip display of all of the parameters available
for the cmdlet, which we are currently focused on. This is a great way to quickly
discover cmdlets and their usages without having to read through the help.

Intellisense is always context sensitive. Here are some examples of when Intellisense
will be invoked. When typing the names of cmdlets or functions by typing a hyphen,
it is invoked as follows:

When adding parameters to a cmdlet by typing a hyphen, it is invoked as shown in
the following screenshot:

New and Improved PowerShell Hosts

[134]

When accessing parameters that accept enumeration or validation sets, it is
invoked as follows:

When accessing the properties and methods of a type by typing the double colons,
we are using the string type to invoke Intellisense as follows:

When accessing the properties and methods of an object by typing a period it
invokes, as shown in following screenshot:

Chapter 6

[135]

Arrow keys can be used to cycle through the available options. At any time we can
press Enter or Tab to select the option that is currently selected. To force Intelllisense
to open we can use the Ctrl + Space bar key combination.

There are several options that can change the behavior of Intellisense. One option is
to disable the Enter key from selecting the currently suggested option. This can be a
problem for some, as they wish to move to the next line but instead select an option
presented by Intellisense. This option is broken down into two separate properties,
one for the script pane and one for the command pane as follows:

$psise.Options.UseEnterToSelectInConsolePaneIntellisense

$psise.Options.UseEnterToSelectInScriptPaneIntellisense

Intellisense can be turned off all together with the following options:

$psise.Options.ShowIntellisenseInConsolePane

$psise.Options.ShowIntellisenseInScriptPane

Snippets
Snippets are short scripts that can be re-used and quickly inserted into the scripts
that we are working on. Sometimes it is nice to be able to quickly insert all the
code necessary for a for loop or function. Rather than having to type all the code
necessary, we can just induce the snippet selection menu and insert the script
snippet. Previously the ISE did not have this feature while other third party script
editors did. The new version of the ISE can now consume special snippet files
and expose them through a key stroke and drop-down menu. Some of the built-in
snippets include loops, functions, and try/catch blocks.

Snippets can both be defined by users or even included in modules. In order to show
the snippet menu in the editor, we use the Ctrl + J short cut. This will display the
following drop-down menu at the line where the cursor is. If we were to select one
of the items from the list, the block would be inserted into that position.

New and Improved PowerShell Hosts

[136]

Snippets define where the caret should be placed after inserting the snippet. This
allows us to just continue on typing rather than having to situate the caret in the
correct place within the script. For example, if we inserted the function snippet, the
caret is placed right after the function keyword so we have an opportunity to enter
the function name. The following commands explain this:

function <caret is here>

{

}

Defining our own snippets
The ISE exposes a couple of simple cmdlets that can be used to create snippets and
retrieve snippets. Snippets are defined as snippet.ps1xml files and stored within
the user's home directory. To access this directory from a PowerShell script or
command line, we can use the following command:

PS C:\> $ENV:USERPROFILE\Documents\WindowsPowerShell\Snippets

Once a snippet has been defined the ISE will automatically load the snippet when it
starts up. To define a new snippet, we can simply use the New-IseSnippet cmdlet
as follows:

New-IseSnippet –Title "Set foreground color" –Description "This snippet
sets the foreground color of the PowerShell host" –Text "`$host.
UI.ForeGroundColor = [Color]::" –CaretOffset 36

This snippet would insert the text that is provided by the Text parameter and then
move the user's caret into the 36 character position. This would place the cursor right
after the double colons that specify the color. We could then just type in the name of
the color and could then change the host's foreground color in our script. Executing
the New-IseSnippet cmdlet would also store the snippet into the path defined by
the following command:

Join-Path (Split-Path $profile.CurrentUserCurrentHost) "Snippets"

To get a list of the defined snippets we can also use the Get-IseSnippet cmdlet.
It will return a list of the available user-defined snippets. This is done by using the
following commands:

PS C:\Users\Adam> Get-IseSnippet

 Directory:

C:\Users\Adam\Documents\WindowsPowerShell\Snippets

Chapter 6

[137]

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 2/12/2012 8:39 AM 754 Set foreground color.snippets.ps1xml

Notice that it displays the path to where the snippet is stored and the file name of
the snippet. The object type returned by the Get-IseSnippet cmdlet is a FileInfo
object. Because of this we can use the file system provider to remove the snippet
using Remove-Item. Get-IseSnippet does not offer a filtering mechanism so we will
need to use Where-Object to get the correct snippet file as follows:

Get-IseSnippet | Where-Object Name -like "Set foreground color*" |
Remove-Item

The snippet will not be automatically removed from the snippet drop-down list.
It is required to restart the ISE after removing the snippet file. It is also possible to
store snippets in locations other than the home directory snippets folder. In order
to load these snippets we need to call a special method found under the $PSISE
variable as follows:

$psISE.CurrentPowerShellTab.Snippets.LoadFromFolder($MyFolderPath, $true)

The first parameter is the path to search for additional snippets. The second
parameter is whether to recursively look for snippet files. The LoadFromFolder
method finds any files matching the pattern *.snippets.ps1xml.

It is also now possible to ship modules with snippets included. Within the
module, simply include a snippets folder underneath the module folder which
contains all the snippet files. Once the module has been loaded into the ISE using
Import-Module, we can use another method found on the $PSISE variable to load
those snippets as follows:

$psISE.CurrentPowerShellTab.Snippets.LoadFromImportedModules()

Once we have executed the previous line all the snippets found in any of the loaded
modules will be loaded into the ISE. As we can see the extensive use of snippets will
help to alleviate some of the typing necessary for large blocks of PowerShell script.
Being able to ship snippets in modules makes packaging functionality into a module
even more beneficial.

New and Improved PowerShell Hosts

[138]

XML file syntax highlighting
Although most PowerShell components are defined as either PowerShell scripts or
binary modules, there are several pieces of the system that utilize XML. For example,
the PS1XML file extension is used for defining type formatters and the XML file
extension is used to define contextual help. PowerShell ships with a lot of these files
to make working with certain types of objects much easier on the command line.
Third party modules also have the option to ship with these types of modules if they
wish. The new version of the ISE now supports simple XML syntax highlighting and
code folding.

It also does some error checking on the fly so squiggly lines are placed under
elements of sections that do not match the syntactical or structural guidelines for
XML. The editor will work in XML-mode when a PS1XML or XML file is opened.
There is no Intellisense support for XML documents.

Other editor enhancements
In addition to Intellisense and snippets there have been a whole host of other
enhancements to make working in the ISE better. One enhancement has to do with
braces. When braces are opened, it can sometimes be hard to find which closing
brace matches the open brace. In order to make this easier to locate in a glace, there
is now brace matching available. When positioning the caret after the opening
brace, both matching opening and closing braces will be highlighted to show the
match. In addition to the visual cue, it is also possible to jump to a matching brace by
positioning the cursor before an opening brace, or after a closing brace and selecting
Edit\Go To Match or by pressing Ctrl +].

Not only can we match the braces but also fold the code within the braces. Code
folding is the ability to hide entire blocks of code within a section. In this case, on the
left-hand side of an open brace there will now be a minus icon. Clicking on this icon
will fold or hide the code within the matching braces. This can help with large scripts
that have many functions or nested code blocks. In addition to folding matched braces,
we can also fold commented sections based on the new region code word. We can
start a region with a comment that starts with the region. To signify the end of a region,
we insert another comment with the word text endregion. The ISE will then allow us
to fold the code between the two regions as shown in the following screenshot:

Chapter 6

[139]

Errors are now highlighted in the script prior to running it. The ISE parses the script
and will signify errors, by drawing a squiggly line underneath the problematic code.
Moving the mouse cursor over the squiggly line will cause the ISE to display a
tool-tip which describes why it has highlighted to the code. This provides us with
quicker feedback than we would typically get by re-running the script over and
over again as follows:

Another usability improvement is the ability to block copy and replace text. With
either Alt + Mouse or Alt + Shift + arrow keys we can select a block of text rather than
lines of text. It behaves the same way the Mark option does within common Windows
command prompts. In addition to selecting text though, we can replace text in the
block. This is referred to as filling as follows:

Stop-Process PowerShell

Stop-Process Notepad

Stop-Service TermService

After block selecting the text like this, if we typed Start the script would result in
the following text:

Start-Process PowerShell

Start-Process Notepad

Start-Service TermService

Often times we may need to copy text from the ISE and place it into another
document. If it's a blog post or something similar, it may be nice to maintain the
formatting and the syntax highlighting. This was not the case in the previous version
of the ISE. In the new version, both the command pane and script pane will provide
formatting data into the text copied from them. When pasted into a rich text editor
like Microsoft Word, the syntax highlighting will be included as well.

Another hidden gem in this version of the ISE is the auto-save feature. In the
previous version of the ISE, if the editor was shut down unexpectedly, any unsaved
work would have been lost. In the new version of the ISE this is alleviated by an
auto-save feature. There is a configurable interval that can be set which tells the ISE
how often to auto-save documents. If the ISE is then closed forcibly, the next time the
ISE opens it will attempt to recover the documents that were not saved during the
last session.

New and Improved PowerShell Hosts

[140]

Another subtle but beneficial enhancement is the zoom level. In the previous
version of the ISE the text was zoomed based on a font size setting rather than a
percentage. This could cause problems on machines that had different DPI settings
and made it harder to work with add-ons. In the new ISE the zoom factor is based
on a percentage.

ISE options
The ISE has a whole host of options for adjusting how the tool behaves. These
options affect Intellisense, snippets, add-ons, and other properties and behaviors
of the editor. This section will outline some of the important options, their default
values, and accepted ranges.

Options are accessible through the $PSISE variable that is defined in the ISE host.
Using the new Intellisense, typing the following will display a full list of options that
the ISE exposes:

#Use for Intellisense

$PSISE.Options.

#Use for a full list in the output pane

$PSISE.Options | Get-Member

At any point that we want to reset our options back to default values we can use the
RestoreDefaults method on the Option property as follows:

$PSISE.Options.RestoreDefaults()

Chapter 6

[141]

List of ISE options
Although the list is not comprehensive, it contains many of the options that pertain
to functionality that we have looked at elsewhere in this chapter. All of the option
names are properties of the ISEOptions type. An instance of this type is available
through the $psISE.Options property. Changing any of the properties will have an
instant effect on the ISE. For example, to access the FontSize property we could do
the following:

$PSISE.Options.FontSize = 20

Option Name Description Default
Value

AutoSaveMinuteInterval This is the interval
at which documents
within the ISE will be
auto-saved.

2

MruCount It configures how
many most recently
used files are
displayed in the
File menu.

10

ShowDefaultSnippets Whether or not
to display default
snippets. If false, only
user defined snippets
will be shown.

True

ShowIntellisenseInConsolePane Whether or not to
display Intellisense
in the command
pane.

True

ShowIntellisenseInScriptPane Whether or not to
display Intellisense
in the script pane.

True

ShowLineNumbers Whether to show
line numbers

True

ShowOutlining Whether to show
bracket outlining.
When outlining is
off, code folding is
also disabled.

True

New and Improved PowerShell Hosts

[142]

Option Name Description Default
Value

ShowWarningBeforeSavingOnRun Whether to show a
warning that a file
must be saved before
running it.

True

UseEnterToSelectInConsolePaneIntellisense Whether enter selects
the current item in
the command pane
Intellisense. If this
option is false, tab
will still select
the item.

True

UseEnterToSelectInScriptPaneIntellisense Whether enter selects
the current item
in the script pane
Intellisense. If this
option is false, tab
will still select
the item.

True

UseLocalHelp Whether the ISE help
dialog is displayed or
the online version is
displayed. This does
not affect PowerShell
contextual help.

True

Colors
In addition to the options defined in this table, there are numerous color settings
available through the Options property. Some of the simple colors include error,
verbose, or debug colors, or even output and script pane colors. These colors can be
set by setting the properties of the ISEOptions as follows:

$PSISE.Options.ErrorBackgroundColor = [System.Windows.Media.
Colors]::Orange

We could also use the string Orange rather than typing the full type name, as done
in this example. Colors can also be created using RGB values using the System.
Windows.Media.Color class.

Chapter 6

[143]

In addition to the basic colors that we can set, there are a wide range of finely
grained syntactical color settings that we can adjust. To access these color groups
we can use the TokenColors or XmlColors properties of the ISEOptions class. Both
of these items are hash tables of colors. The key is the name of the token or element,
that the syntax highlighting affects and the value is the color. Some of the token
colors include Command, CommandParameter, Keyword, Number, and Operator. Some
of the XML token colors include ElementName, Text, and Attribute.

To adjust any of these colors we would use the following syntax. Note that the
setting will take affect instantly.

 $PSISE.Options.TokenColors["Comment"] = "Red"

Note that in this example, we used a string for the color name. PowerShell
automatically converted Red into the object representation of the color.

ISE add-ons
The ISE has always been extensible through the $PSISE variable. This has allowed
the PowerShell community to create a large set of add-ons that enhance the ISE
beyond what was originally released. The properties exposed by the $PSISE
available allow us to access the tabs, documents, and even text. Almost anything
within the ISE can be modified. The PowerShell 3.0 version of the ISE comes with a
built-in add-on which is enabled by default. When we open up the environment we
have an extra tool window on the right-hand side of the editor called the Command
Window. It has a list of the currently defined functions and cmdlets. Double-clicking
on any one of the items will execute the command in the ISE.

The add-on menu is now shown by default and directs us to the Internet repository
of downloadable add-ons. Creating add-ons is nothing more than writing scripts that
interact with the ISE and expose new functionality. For example, if we wanted to add
a new menu item to the Add-ons menu, we could do something like the following:

$psISE.CurrentPowerShellTab.AddonsMenu.SubMenus.Add("Say Hello", { Write-
Host "Hello!" },$null)

After executing this method we will now have a new menu item in the Add-ons
menu with the display text of Say Hello. Clicking on the menu item will execute
Write-Host and print the text into the output pane. Executing a command like this
will not cause the ISE to recall the menu the next time it is started. In order to persist
ISE add-ons, it is general practice to package the scripts into a module. As modules
can define which hosts that they support, we can create a module that works only
in the ISE by specifying the host name Windows PowerShell ISE Host. There are all
kinds of things that the PSISE variable exposes to us. We can go as far as to modify
the text within the tabbed documents by using the Editor property.

New and Improved PowerShell Hosts

[144]

The latest version of the ISE has reached the level of some of the third party script
editors that are available. The inclusion of Intellisense, snippets, and basic text
editing features, such as block copy and code folding, make it much easier to
work with than the previous version. Thanks to the easy to use extensibility and
customizability of the ISE, it ensures a much better user experience to a wide range
of PowerShell users.

Summary
As we saw in this chapter the ways to access and run PowerShell have extended
beyond a desktop computer. The PowerShell Web Access now allows us to access
our management from any device that supports a web browser. We also saw how
the changes to the PowerShell ISE have made it a much more viable alternative to
the third party script editors. Features such as snippets and Intellisense make it a
much more valuable tool for working with scripts. Additionally, the ability to extend
and modify the ISE makes it an even more valuable tool as the community begins to
develop add-ons.

In the final chapter, we will take a look at a some of the new cmdlets and modules
found within the Windows Server 2012 and Windows 8.

Windows 8 and Windows
Server 2012 Modules

and Cmdlets
The Windows 7 and Windows Server 2008 R2 were the first operating systems to
have PowerShell packaged directly within the operating system. The language was
even enabled by default. Out of the box PowerShell offered around 250 cmdlets and
just a few modules. The list has grown dramatically in the next version of the client
and server of the Microsoft operating system. Windows Server 2012 has over 2300
cmdlets and around 60 modules that come with the system. This wide coverage is in
part, due to the native CIM cmdlets that make it easier for Windows feature teams
to produce cmdlets, and in part due to the dedication of Microsoft to provide a
PowerShell interface for all their products.

This chapter will be dedicated to looking at a select list of the modules and cmdlets
in detail. Each section will be broken down by module and then will delve into some
of the cmdlets within that module. The end of the chapter will have a description of
some of the modules we didn't investigate in detail.

In this chapter we will cover the following topics:

•	 A selection of new cmdlets found in the core PowerShell modules
•	 A selection of new modules and cmdlets found in Windows 8 and Windows

Server 2012

Windows 8 and Windows Server 2012 Modules and Cmdlets

[146]

Core modules
These modules are installed by default in both Windows 8 and Windows Server
2012. These cmdlets will be available on machines that are running the latest version
of the Windows Management Framework as well.

Invoke-WebRequest
In the previous version of PowerShell, a .NET class was required to access
web-based content. In PowerShell 3.0, the same can be accomplished by utilizing the
Invoke-WebRequest cmdlet. The cmdlet returns an object HttpWebResponseObject
that contains all kinds of information about the HTTP request such as the response
code, the response content, and even parsed elements within the page, such as links
and forms.

Usage examples
The following example retrieves a pages links, selects the first three, and outputs
their innerHTML and destination:

PS C:\> Invoke-WebRequest www.microsoft.com | Select-Object
-ExpandProperty links | Select-Object -First 3 –Property innerHtml,href

innerHTML href

--------- ----

<DIV id=ctl00_... /en-us/default.aspx?bldi=0-0

<DIV class=hp_... http://windows.microsoft...

Windows http://windows.microsoft...

The following example retrieves the first image found on www.microsoft.com and
displays it in the default web browser:

PS C:\ > Start-Process (invoke-webrequest -Uri http://www.microsoft.
com | Select-Object -ExpandProperty images | Select-Object -First 1
-ExpandProperty Src)

Chapter 7

[147]

Invoke-RestMethod
This cmdlet is used to invoke Representational State Transfer (REST) methods.

REST is a client/server architecture based on resource
types and state. Universal Resource Identifiers (URI),
are used to access different resources within a RESTful
service. Typically, RESTful services utilize the existing HTTP
protocol to communicate between the client and server.

Usage examples
The following example invokes a REST method using the HTTP GET method to
retrieve a particular resource on the mydomain.com server. It is expected that the
result will be returned as JSON:

Invoke-RestMethod –Uri http://www.mydomain.com/group/1/user/123 -Method
GET -ReturnType Json

ConvertTo-Json
This cmdlet is used to convert objects in PowerShell into JavaScript Object Notation
(JSON). JSON is used to serialize object structures to a string so that it can be sent in
between a client and server. JSON is frequently used on wide area networks because
its syntax is much more succinct than schemes such as XML.

Usage examples
The following example converts an object to JSON:

PS C:\> Get-Variable PSUICulture | ConvertTo-Json

{

 "Value": "en-US",

 "Name": "PSUICulture",

 "Description": "UI Culture of the current Windows PowerShell Session.",

 "Visibility": 0,

 "Module": null,

 "ModuleName": "",

 "Options": 9,

 "Attributes": [

]

}

Windows 8 and Windows Server 2012 Modules and Cmdlets

[148]

The following example converts an object to JSON that has members added
at runtime:

PS C:\> Get-Random | Add-Member -MemberType NoteProperty -Value "MyValue"
-Name "MyProperty" –PassThru | ConvertTo-Json

{

 "value": 1705462562,

 "MyProperty": "MyValue"

}

The following example shows that the ConvertTo-Json treat data types like strings
and integers differently than the objects shown previously. Notice that there is no
length property serialized in this example, even though the string class exposes it.

PS C:\> "MyString" | ConvertTo-Json

"MyString"

PS C:\> Get-Random | ConvertTo-Json

1231

ConvertFrom-Json
This cmldet is used to convert a JSON string into an object that can be used in
PowerShell. Unlike the ConvertTo-CliXml, the ConvertFrom-Json cmdlet does not
preserve type data and will simply be of the type PSCustomObject. Particular data
types can be converted into their object representation if put in the correct format.

Usage examples
The following example shows that the JSON string in the example is converted into a
PSCustomObject with a property DateTime that is a String type:

PS C:\ > '{ "DateTime": "Thursday, February 23, 2012 7:56:18 PM" }' |
ConvertFrom-Json | Get-Member -Name Date

Time

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition

---- ---------- ----------

DateTime NoteProperty System.String DateTime=Thursday, February 23, 2012
7:56:18 PM

Chapter 7

[149]

The following example shows that particular data type formats, in this case a
date, are passed to the ConvertFrom-Json cmdlet, it will be able to convert it to
a .NET class:

PS C:\ > '{ "DateTime": "\/Date(1330048578834)\/" }' | ConvertFrom-Json
| Get-Member -Name DateTime

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition

---- ---------- ----------

DateTime NoteProperty System.DateTime DateTime=2/24/2012 1:56:18 AM

ControlPanelItem
The Get-ControlPanelItem and Show-ControlPanelItem cmdlets are used to
list and show control panel items that are currently installed on the system.
Using the Show-ControlPanelItem will cause the control panel window to
be shown immediately.

Usage examples
The following example gets the Mouse control panel item and shows the Name,
Category and Description properties:

PS C:\> Get-ControlPanelItem -Name Mouse | Select-Object
Name,Category,Description

Name Category Description

---- -------- -----------

Mouse {All Control Panel Items} Customize your...

The following example shows the Fonts control panel item using the canonical
name:

PS C:\> Show-ControlPanelItem -CanonicalName Microsoft.Fonts

Rename-Computer
This cmdlet is used to rename local or remote computers. The cmdlet can use both
local or domain credentials and can trigger a restart.

Windows 8 and Windows Server 2012 Modules and Cmdlets

[150]

Usage examples
The following example renames the computer driscoll-hv1 to driscoll-hv2
using the domain credentials. The command also bypasses confirmation and causes a
restart of the machine:

PS C:\> Rename-Computer –ComputerName driscoll-hv1 –NewName driscoll-hv2
–DomainCredential mdn\administrator –Force –Restart

TypeData
The TypeData cmdlets are used for managing the Extended Type System (ETS),
type data that has been loaded into PowerShell. This type data is added through
*.types.ps1xml files and are typically found in modules.

Usage examples
The following example returns the ETS type data for the System.Management.
ManagementObject class and displays the added ETS members:

PS C:\ > Get-TypeData System.Management.ManagementObject | Select-Object
-ExpandProperty Members

Key Value

--- -----

ConvertToDateTime ...ScriptMethodData

ConvertFromDateTime ...ScriptMethodData

The following example removes the ETS type data for the System.Guid class:

PS C:\ > [System.Guid]::NewGuid() | Get-Member –Name Guid

 TypeName: System.Guid

Name MemberType Definition

---- ---------- ----------

Guid ScriptProperty System.Object Guid {get=$this.ToString();}

PS C:\ > Remove-TypeData –TypeName System.Guid

PS C:\ > [System.Guid]::NewGuid() | Get-Member –Name Guid

PS C:\ >

Chapter 7

[151]

Unblock-File
This cmdlet is used to remove the alternate data stream from the file, known as the
zone identifier. The zone identifier signifies that the file has come from the Internet
and PowerShell will warn or prevent you from executing scripts with this zone
identifier. This can become very hard to deal with when a lot of files are involved,
such as with a module. The Unblock-File cmdlet makes this much easier.

Usage examples
The following example removes the zone identifier from the Test.ps1 file:

PS C:\> Unblock-File –Path C:\Users\Adam\Documents\Test.ps1

The following example unblocks all the files in the HyperV module directory:

PS C:\> Get-ChildItem -Path C:\Users\Adam\Documents\WindowsPowerShell\
Modules\HyperV | Unblock-File

Standard modules
These modules are part of the standard set of modules available on Windows 8
and Windows Server 2012 machines. They are not available to users who install the
Windows Management Framework on machines such as Windows 7 or Windows
Server 2008 R2. No features or roles are required to access any of these modules and
most of them are based on CIM providers so they support CIM sessions.

NetAdapter module
This module is available for the users running Windows 8 and Windows Server 2012
and it requires no feature. It contains a total of 64 cmdlets. The following command
shows how to import this module:

PS C:\ > Import-Module NetAdapter

The NetAdapter module exposes cmdlets that manage the network adapters,
protocol bindings, and numerous other network related operations. The module is
enabled by default and there are no features that need to be installed to enable it. The
cmdlets in this module are based on CIM and support CIM sessions.

Windows 8 and Windows Server 2012 Modules and Cmdlets

[152]

NetAdapter cmdlets
These cmdlets allow us to manage the network adapters that are currently
installed on the system. The Get-NetAdapter allows us to retrieve them. The
Set-NetAdapter allows us to change the MAC and VLAN ID of the adapters. The
Enable-NetAdapater, Disable-NetAdapter, and Restart-NetAdapter allow us
to change the state of the adapter.

Usage examples
The following example returns all the network adapters on the local machine:

PS C:\> Get-NetAdapter

Name Interface MacAddress Operational LinkSpeed

 Index Status

---- --------- ---------- ----------- ---------

Wired... 12 00-15-5D-91-3A-0C Up 10 Gbps

The following example resets the network adapters that match the name Wired*:

PS C:\> Get-NetAdapter Wired* | Restart-NetAdapter

The following example sets the VLAN ID of all the network adapters that match the
name Wired*:

PS C:\> Get-NetAdapter Wired* | Set-NetAdapter –VLANID 3

NetAdapterBinding
Theses cmdlets let us manage the network bindings for the various interfaces defined
in the local or remote system. In addition to seeing the current defined bindings,
such as TCP/IP v4, we can enable and disable the bindings for particular interfaces.

Usage examples
The following example returns the network bindings that match the display name
TCP/IPv4:

PS C:\ > Get-NetAdapterBinding -DisplayName *TCP/IPv4*

Name DisplayName ComponentID Enabled

---- ----------- ----------- -------

Wired...Internet... ms_tcpip True

Chapter 7

[153]

The following example disables all network adapter bindings that match the display
name *TCP/IPv6*:

PS C:\ > Get-NetAdapterBinding -DisplayName *TCP/IPv6* | Disable-
NetAdapterBinding

NetAdapaterAdvancedProperty
These cmdlets are used for managing some of the advanced properties for
network adapters. Some of these properties include receive buffer size and TCP
checksum offload for IPv4 and IPv6. We can retrieve the properties using the
Get-NetAdapterAdvancedProperty cmdlet and set them using the
Set-NetAdapterAdvancedProperty cmdlet. We can even create new properties
using the New-NetAdapterAdvancedProperty cmdlet.

Usage examples
The following example gets the Receive Buffers advanced NetAdapter property:

PS C:\> Get-NetAdapterAdvancedProperty –DisplayName "Receive Buffers"|
Select-Object -ExpandProperty RegistryValue

512

The following example enables the Jumbo Packet advanced NetAdapter property:

PS C:\> Set-NetAdapterAdvancedProperty –Name "Wired Ethernet Connection"
–DisplayName "Jumbo Packet" –Value "Enabled"

SmbShare module
This module is available in Windows 8 and Windows Server 2012 and it does not
require any feature as well. There are a total of 23 cmdlets in this module. The
following command is used to import it:

PS C:\> Import-Module SmbShare

The SmbShare module is used to manage Server Message Block (SMB) shares,
connections, and other share related information on a Windows machine. The
cmdlets found within the module can create new shares, configure permissions,
and enumerate connections to the shares. The cmdlet can also control SMB client
configuration settings and network interfaces used for the SMB connections. The
cmdlets within this module are native CIM cmdlets and support CIM sessions.

Windows 8 and Windows Server 2012 Modules and Cmdlets

[154]

SmbShare
The SmbShare cmdlets allow for enumeration, creation, removal, and access control
of the SMB shares on the current server.

Usage examples
The following example selects the first SMB share:

PS C:\ > Get-SmbShare | Select-Object –First 1

Name ScopeName Path Description

---- --------- ---- -----------

ADMIN$ * C:\Windows Remote Admin

The following example creates a new SMB share with the name Share and the path
C:\Share:

PS C:\> New-SmbShare –Path C:\Share –Name Share

The following example removes the SMB share named Share:

PS C:\> Remove-SmbShare –Name Share

SmbSession
These cmdlets are used for managing sessions that currently are connected to the
SMB shares on the local or remote machine.

Usage examples
The following example enumerates the current SMB session connections on the local
machine:

PS C:\ > Get-SmbSession

SessionId ClientComputerName ClientUserName NumOpens

--------- ------------------ -------------- --------

377957122073 \\[fe80::952f:e0... MDN\Administrator 3

The following example closes all the SMB session connections for the
mdn\administrator user on the local machine:

PS C:\> Get-SmbSession -ClientUserName mdn\administrator |
Close-SmbSession

Chapter 7

[155]

SmbShareAccess
These cmdlets are used to retrieve, grant, and revoke SMB share access.

Usage examples
The following example retrieves a share's access control list:

PS C:\ > Get-SmbShareAccess -Name Share

Name ScopeName AccountName AccessControlType AccessRight

---- --------- ----------- ----------------- -----------

Share * Everyone Allow Read

The following example revokes the Full access right to a SMB share from the
Everyone user group:

PS C:\> Get-SmbShareAccess –Name Share | Revoke-SmbShareAccess –
AccountName Everyone

Name ScopeName AccountName AccessControlType AccessRight

---- --------- ----------- ----------------- -----------

Share * Everyone Deny Full

The following example completely blocks a share access without specifying the
access control type:

PS C:\> Block-SmbShareAccess –Name Share –AccountName Everyone

Name ScopeName AccountName AccessControlType AccessRight

---- --------- ----------- ----------------- -----------

Share * Everyone Deny Full

Share * Everyone Allow Full

SmbOpenFile
These cmdlets are intended to enumerate and close open files and directories that are
being served through SMB shares on the local or remote machine.

Windows 8 and Windows Server 2012 Modules and Cmdlets

[156]

Usage examples
The following example gets a list of open SMB files:

PS C:\> Get-SMBOpenFile | Select-Object ClientComputerName,ClientUserName
,Path

ClientComputerName ClientUserName Path

------------------ -------------- ----

\\10.0.0.3 MDN\Administrator C:\\Users\Administrator

\\10.0.0.3 MDN\Administrator C:\\Users\Administ...

The following example closes all the open SMB files and directories for a particular
user:

PS C:\ > Get-SmbOpenFile -ClientUserName mdn\administrator | Close-
SmbOpenFile

Confirm

Are you sure you want to perform this action?

Performing operation 'Close-File' on Target '395136991761'.

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"): a

PrintManagement module
This module is available in Windows 8 and Windows Server 2012 and no feature
is required. There are a total of 18 commands. The following command is used to
import this module:

PS C:\> Import-Module PrintManagement

This module is used for managing printers, print drivers, printer configuration, and
print jobs. These cmdlets are based on CIM classes and support CIM sessions.

Printer
These cmdlets are used for retrieving, adding, removing, and modifying printers.

Chapter 7

[157]

Usage examples
The following example gets the OneNote printer and displays its name, type, driver
name, and port:

PS C:\ > Get-Printer -Name *OneNote* | Select-Object
Name,Type,DriverName,PortName

Name Type DriverName PortName

---- ---- ---------- --------

OneNote... Local Remote Desktop Easy Print TS014

The following example sets the comment on the XPS Document Writer printer:

PS C:\> Get-Printer -Name "Microsoft XPS Document Writer" | Set-Printer
-Comment "Local Printer"

PrintJob
These cmdlets manage running and historic printer jobs. Jobs can be stopped,
paused, restarted, and resumed.

Usage examples
The following example stops all printer jobs that are currently running on the
Microsoft XPS Document Writer:

PS C:\> Get-Printer -Name "Microsoft XPS Document Writer" |
Get-PrintJob | Remove-PrintJob

PrintConfiguration
These cmdlets get and set the print configuration for a printer.

Usage examples
The following example returns the print configuration for the Microsoft XPS
Document Writer printer:

PS C:\ > Get-Printer -Name "Microsoft XPS Document Writer" | Get-
PrintConfiguration

PrinterName ComputerName Collate Color DuplexingMode

----------- ------------ ------- ----- -------------

Microsoft XP... False True OneSided

Windows 8 and Windows Server 2012 Modules and Cmdlets

[158]

Windows data access control module
This module is available in Windows 8 and Windows Server 2012 and it requires no
feature. There are a total of 12 cmdlets in this module. The following command is
used to import this module:

PS C:\> Import-Module wdac

The WDAC module is used for managing ODBC connections. This module is based on
CIM classes and supports CIM sessions.

OdbcDsn
These cmdlets are used for managing ODBC Data Source Names (DSN) defined
on the local or remote system. It's possible to enumerate, create, update, and
remove a DSN.

Usage examples
The following example creates a new ODBC DSN on the local machine named
InternalDsn, connecting the SQL Server ODBC driver to the database LocalDatabase
stored on the server sql2008. Note that depending on the driver, the property values
may vary:

PS C:\ > Add-OdbcDsn -Name InternalDsn -DsnType User -DriverName "SQL
Server" -SetPropertyValue @("Database=LocalDatabase","Server=sql2008")

The following example retrieves the defined ODBC DSNs on the local machine:

PS C:\ > Get-OdbcDsn

Name : InternalDsn

DsnType : User

Platform : 32/64-bit

DriverName : SQL Server

Attribute : {Server, Database}

OdbcDriver
These cmdlets are used for managing the ODBC drivers that are installed on the
system. ODBC drivers are used to connect to different types of databases.

Chapter 7

[159]

Usage examples
The following example gets the 64-bit ODBC drivers on the local machine and
formats the output as a list:

PS C:\ > Get-OdbcDriver –Platform 64-bit | Format-List

Name Platform Attribute

---- -------- ---------

SQL Server 64-bit {Driver, APILevel, FileUsage,...}

DnsClient module
This module is available in Windows 8 and Windows Server 2012 and it requires no
feature. There are a total of 15 cmdlets.

PS C:\> Import-Module DnsClient

The DnsClient module offers cmdlets for interacting with the local DNS client. This
includes cmdlets for resolving DNS names, viewing the cached DNS records, and
enumerating DNS servers. This cmdlet is based on a CIM provider and can utilize
CIM sessions.

Resolve-DnsName
This cmdlet resolves the specified name to an IP address. This cmdlet offers many
different kinds of filtering options. It also allows for queries based on DNS record
type, such as A and AAAA.

Usage examples
The following example resolves the computer name driscoll-laptop:

PS C:\ > Resolve-DnsName –Name driscoll-laptop | Format-List

Name : driscoll-desk

Type : AAAA

TTL : 30

DataLength : 16

Section : Answer

IPAddress : fe80::48d1:aec:7a7a:1a8

Windows 8 and Windows Server 2012 Modules and Cmdlets

[160]

Name : driscoll-desk

Type : A

TTL : 30

DataLength : 4

Section : Answer

IPAddress : 10.0.0.8

DnsClientCache
These cmdlets are used for viewing and clearing the DNS client cache records.

Usage examples
The following example returns a list of the DNS records currently in the DNS cache
and selects the name of the device:

PS C:\ > Get-DnsClientCache| Select-Object -Property Name

Name

driscoll-laptop

sqm.telemetry.microsoft.com

driscoll-desk

The following example clears the DNS cache:

#Clear the DNS cache.

PS C:\ > Clear-DNSClientCache

#Get a list of the host names currently in the cache

PS C:\> Get-DNSClientCache | Select-Object -Property Name

Get-DnsServerAddress
This cmdlet returns the DNS server addresses that the current machine is using to
resolve host names. This cmdlet will return the loopback, IPv4, and IPv6 addresses
that are being used. The name of the adapter is also included.

Chapter 7

[161]

Usage examples
The following example returns the names and addresses of the DNS servers that are
currently being utilized by the local machine:

DNSGlobalSettings
These cmdlets are used to enumerate and modify the global DNS settings for the
local or remote DNS client. Some of the settings include root suffixes and whether
to append parent suffixes.

Usage examples
The following example returns a list of the current DNS global settings for the
local machine:

PS C:\> Get-DNSClientGlobalSetting

UseSuffixSearchList : True

SuffixSearchList : {mdn.ard}

UseDevolution : True

DevolutionLevel : 0

The following example replaces the DNS suffix search list with mdnvdi:

PS C:\> Set-DNSClientGlobalSetting -SuffixSearchList {"mdnvdi" }

Storage module
This is available in Windows 8 and Windows Server 2012 and it requires no features.
There are a total of 64 cmdlets in this module:

PS C:\> Import-Module Storage

Windows 8 and Windows Server 2012 Modules and Cmdlets

[162]

The storage module exposes all kinds of cmdlets for managing storage devices on
a machine. Some of the resources that can be managed include physical and virtual
disks, volumes, and partitions. In addition to managing physical or virtual storage
resources, the module can manage the storage subsystem, pools, and providers. The
cmdlets in this module are based on a CIM provider and can utilize CIM sessions.

Disk
These cmdlets manage both physical and virtual disks. In addition to enumerating
and setting properties of existing disks, there are cmdlets for initializing disks with
boot sectors.

Usage examples
The following example returns the disks on the local machine:

PS C:\ > Get-Disk

Number Friendly Name OperationalStatus Total Size Partition

------ ------------- ----------------- ---------- -----------

0 Virtual ... Online 127 GB MBR

1 Msft ... Online 200 MB MBR

The following example sets disk number 1 to offline and returns the result using
Get-Disk:

PS C:\Users\Administrator> set-disk -Number 1 -IsOffline $true

PS C:\Users\Administrator> Get-Disk -Number 1

Number Friendly Name OperationalStatus Total Size Partition

------ ------------- ----------------- ---------- ---------

1 Msft ... Offline 200 MB MBR

The following example initializes disk number 1 with the Master Boot Record
partition style:

PS C:\> Initialize-Disk -Number 1 -PartitionStyle MBR

Partition
These cmdlets manage disk partitions. It is possible to enumerate, modify, create,
remove, and even resize partitions.

Chapter 7

[163]

Usage examples
The following example creates a new partition on virtual disk number 1. This
will create a new partition but will not format it. It will assign the driver letter D
to the disk:

PS C:\> New-Partition –DiskNumber 1 –DriveLetter D

 Disk Number: 1

Number DriveLetter Offset TotalSize Type

------ ----------- ------ --------- ----

2 D 33619968 67.88 MB Basic

The following example resizes an existing partition on disk number 1 to 50 MB:

PS C:\ > Resize-Partition -DiskNumber 1 -Number 2 -Size 50MB

PS C:\ > Get-Partition -DiskNumber 1

 Disk Number: 1

Number DriveLetter Offset TotalSize Type

------ ----------- ------ --------- ----

1 17408 32 MB Reserved

2 D 33619968 50 MB Basic

Volume
These cmdlets deal with disk volumes. This set of cmdlets can enumerate volumes,
format and repair volumes and even optimize volumes.

Usage examples
The following example gets a list of the volumes and displays their drive letter,
description, and size:

PS C:\ > Get-Volume | Select-Object -Property DriveLetter,FileSystemLabel
,Size

DriveLetter FileSystemLabel Size

----------- --------------- ----

 System Reserved 366997504

C 135994011648

A 0

D 0

Windows 8 and Windows Server 2012 Modules and Cmdlets

[164]

The following example formats an unallocated partition on a virtual disk. The
default file system format is NTFS:

Roles and feature based modules
These modules are available for specified roles and features of the Windows 8 and
Windows Server 2012 operating systems. They are not available to users who install
the Windows Management Framework outside of these operating systems. Many
of these modules require that a role or feature be installed. Several will not even be
available until the role or feature is installed.

Hyper-V module
This module requires Hyper-V role, and it is imported using the following command:

PS C:\> Import-Module Hyper-V

Hyper-V is Microsoft's virtualization platform. It is a type 1 hypervisor and comes
packaged as a configurable role in both Windows 8 and Windows Server 2012.
Although this role was available in previous versions of the Windows Server family
of operating systems, this is the first version to offer native PowerShell support, as
well as run on the client version of the operating system. This module will not be
available until the role is enabled.

VM
These cmdlets are used to directly work with virtual machines. The set includes
cmdlets to start, stop, snapshot, and enumerate virtual machines on local and remote
systems. These cmdlets are often paired with other virtual hardware cmdlets that
allow for even finer grained management of virtual systems.

Chapter 7

[165]

Usage examples
The following example shuts down all machines on the local server. The Stop-VM
cmdlet can also power off machines;

PS C:\> Get-VM | Stop-VM –PassThru | Select-Object –Properties
Name,State,Status

Name State Status

---- ----- ------

win7x6401 Off Operating normally

windows7 Off Operating normally

The following example shows how to create a new virtual machine. The newly
created virtual machine will have one gigabyte of virtual memory, a 50 GB virtual
hard disk and be named win7x6401. The virtual machine will also have several other
hardware components added by default, such as a DVD drive:.

PS C:\> New-vm -Name win7x6401 -MemoryStartupBytes 1GB -NewVHDSize 50GB
-NewVHDPath C:\vhd\win7x6401.

Vhdx | Select-Object –Properties Name,State,Status

Name State Status

---- ----- ------

win7x6401 Off Operating normally

The following example takes a snapshot of the current state of the virtual machine. It
then returns a list of the snapshots for the virtual machine:

PS C:\ > Get-VM -Name win7x6401 | Checkpoint-VM

PS C:\ > Get-VM -Name win7x6401| Get-VMSnapshot | Select-Object -Property
Name

Name

win7x6401 - (2/26/2012 - 9:54:25 AM)

Windows 8 and Windows Server 2012 Modules and Cmdlets

[166]

VMDvdDrive, VMHardDiskDrive, and
VMNetworkAdapter
These cmdlets manage virtual hardware for virtual machines. They are typically
coupled with the Get-VM cmdlet. This list is not complete. There are several other
cmdlets that can manage additional hardware, such as processors, COM ports, and
even the BIOS. Most cmdlets that attempt to modify an existing virtual machine will
require that the machine is not running.

Usage examples
The following example removes the virtual DVD drive from the virtual machine
win7x6401:

PS C:\> Get-VM win7x6401 | Get-VMDvdDrive | Remove-VMDvdDrive –Verbose

VERBOSE: Remove-VMDvdDrive will remove DVD Drive on IDE controller number
0 at location 1 from the virtual machine

"win7x6401".

The following example adds a new network adapter to the virtual
machine "win7x6401."

PS C:\> Get-VM win7x6401 | Add-VMNetworkAdapter –Verbose

VERBOSE: Current VMobject = Microsoft.HyperV.PowerShell.VirtualMachine[]

VERBOSE: Add-VMNetworkAdapter will add a network adapter to virtual
machine "win7x6401".

Measure-VM
This cmdlet paired with Enable-VMResourceMetering, returns the historical
resource usage for the virtual machine provided. This can be useful for tracking
down troublesome, high-usage memory or processor time virtual machines.

Chapter 7

[167]

Usage examples
The following example enables resource metering for the virtual machine windows7:

PS C:\ > Enable-VMResourceMetering –VMName windows7

The following example retrieves a snapshot of the resource usage for the virtual
machine windows7:

VMHost
These cmdlets are used for managing Hyper-V host settings. Some of these settings
include the MAC address range and the default path to store virtual machines and
VHD files.

Usage examples
The following example sets the local host's resource metering save interval to two
hours and the default virtual hard disk path to C:\VHDS:

PS C:\> Set-VMhost -ResourceMeteringSaveInterval (New-TimeSpan -Hours 2)
-VirtualHardDiskPath C:\VHDS

Windows 8 and Windows Server 2012 Modules and Cmdlets

[168]

The following example returns the current settings for the local virtual machine host:

Active Directory deployment module
This module is available in Windows Server 2012 and it requires Active Directory
Domain Services role. It has a total of 73 cmdlets. The following command shows
how to import the module:

PS C:\> Import-Module ADDSDeployment

The Active Directory deployment module is used for installing and configuring
Active Directory components such as domain controllers. In Windows Server 2012,
Microsoft has deprecated the DCPromo.exe command line tool that has historically
been used to perform the operations found in this module. In addition to installation,
the module comes with numerous cmdlets for testing various aspects of an
ADDS configuration.

Chapter 7

[169]

Install-ADDSForest
These cmdlets are used to install a domain forest.

Usage examples
The following example installs a forest with the domain name MDN.ARD with a
domain and forest mode of 2008 R2. Once the forest has been installed, the machine
will be rebooted:

PS C:\> Install-ADDSForest –DomainName MDN.ARD –DomainMode
Win2008R2 –ForestMode Win2008R2 –RebootOnCompletion

ADDSDomainController
These cmdlets are used to promote and demote servers to and from domain
controller status.

Usage examples
The following example promotes the current machine to a domain controller in the
domain MDN.ARD:

PS C:\> Install-ADDSDomainController –DomainName MDN.ARD

cmdlet Install-ADDSDomainController at command pipeline position 1

Supply values for the following parameters:

SafeModeAdministratorPassword: ************

The following example demotes the last domain controller in a domain and
removes the application partitions associated with it. The machine will restart
once this is complete:

PS C:\ > Uninstall-ADDSDomainController -LastDomainControllerInDomain
-RemoveApplicationPartitions

cmdlet Uninstall-ADDSDomainController at command pipeline position 1

Supply values for the following parameters:

LocalAdministratorPassword: ****

Windows 8 and Windows Server 2012 Modules and Cmdlets

[170]

Test ADDSDeployment
These cmdlets test all kinds of pieces of the ADDS deployment scenario. Some of
the configuration aspects that can be tested include credential validity, NetBIOS
names, and even available disk space. Many of these cmdlets are run as a part of the
validation steps for some of the previously mentioned cmdlets.

Usage examples
The following example shows how we can use one of the test cmdlets to verify the
status of a demote operation:

PS C:\ > Test-ADDSDomainControllerUninstallation | Select-Object
-ExpandProperty message

You indicated that this Active Directory domain controller is not the
last domain controller for the domain "mdn.ard".

However, no other domain controller for that domain can be contacted.
Proceeding will cause any Active Directory Domain Services changes that
have been made on this domain controller to be lost. To proceed anyway,
set the 'IgnoreIsLast

DCInDomainMismatch' option to 'YES'.

AppX module
This module is available in Windows 8 and Windows Server 2012 and it requires no
role or feature. It has a total of five cmdlets:

PS C:\> Import-Module AppX

AppX is a new type of application packaging and deployment model that is part of
Windows 8 and Windows Server 2012. Applications are packed with an application
manifest file that defines metadata about the application. This metadata includes
properties such as the name and copyright information, the dependencies, and
the OS extensions that the application includes. The cmdlets in this module are
designed to enumerate and deploy AppX packages. The cmdlets are not based on
a CIM provider and do not offer a CIM session. The cmdlets also do not offer a
ComputerName parameter and are intended to be run locally. To run remotely, we
will have to use PowerShell remoting.

Chapter 7

[171]

AppXPackage
These cmdlets can add, enumerate, and remove existing AppX packages from the
local system.

Usage examples
The following example returns a list of the AppX packages currently installed on the
local system:

PS C:\> Get-AppXPackage

Name : windows.immersivecontrolpanel

Publisher : CN=Microsoft Windows, O=Microsoft Corporation,
L=Redmond, S=Washington, C=US

Architecture : Neutral

ResourceId :

Version : 6.2.0.0

PackageFullName : windows.immersivecontrolpanel_6.2.0.0_neutral_
neutral_cw5n1h2txyewy

InstallLocation : C:\Windows\System32\ImmersiveControlPanel

IsFramework : False

PackageUserInformation : {}

The following example removes an AppX package using the WhatIf parameter:

PS C:\Users\Administrator> remove-appxpackage -Package "windows.
Immersivecontrolpanel" –whatif

What if: Performing operation "Remove package" on Target "windows.
Immersivecontrolpanel".

Windows 8 and Windows Server 2012 Modules and Cmdlets

[172]

Get-AppXPackageManifest
This cmdlet returns the AppX package manifest as an XML document.

Usage examples
The following example returns the AppX package manifest for the Windows.
ImmersiveControlPanel as an XML string:

PS C:\> Get-AppXPackageManifest –Package "windows.Immersivecontrolpanel"
| Select-Object –Property OuterXml

OuterXml

<?xml version="1.0" encoding="utf-8"?><Package xmlns="http://schemas.
microsoft.com/appx/2010/...

Other modules
In the following section we will look over some of the new modules included with
Windows 8 and Windows Server 2012. These modules are all role or feature based
and some require that these roles be installed before they will even be available on
the command line. We will not be looking at individual cmdlets in this section.

Remote Desktop management module
This module is available in Windows 8 and Windows Server 2012 and it requires no
role or feature. There are a total of 103 cmdlets. The following command shows how
to import this module:

PS C:\> Import-Module RemoteDesktop

The Remote Desktop management module exposes cmdlets for work with the
remote desktop components found in Windows. The cmdlets include sets for
working with pooled session hosts, virtual desktops, and working with brokered
resources such as RemoteApps and remote desktops. This module can also
configure roles, such as the Web Access and Gateway. Although the cmdlet does
not require the Remote Desktop Services role to be installed, it requires access
to an RDS-enabled server to manage.

Chapter 7

[173]

BranchCache module
This module is available in Windows 8 and Windows Server 2012 and it requires
BranchCache feature. It includes a total of 31 cmdlets. The following command is
used to import this module:

PS C:\> Import-Module BranchCache

BranchCache is a Windows server and client feature that caches files locally that
are stored on a remote, central location. As the BranchCache name implies, files are
typically stored within a central headquarters while the outlying branches would
consume them through network shares. Because of the limited bandwidth and high
latency often found in WAN networks, BranchCache aims to limit this impact on
shared file access. BranchCache works through both a hosted model, where a single
server is the local cache and a peer-to-peer model, where clients themselves cache
files and serve them to other clients. BranchCache has been available since Windows
7 and Server 2008 R2.

Once configured, the distribution server that hosts the BranchCache-enabled shares
can be accessed by clients that have BranchCache enabled locally. Files within
shares that have enabled BranchCache will have hashes calculated and published,
so that client machines can easily identify files without downloading them. There
are numerous new cmdlets found in this module to view the status of BranchCache,
disable the system, or publish the file hashes for machines to consume.

Windows Update Services module
This module is available in Windows Server 2012 and it requires Windows Server
Update Services feature. It includes a total of 13 cmdlets. The following command is
used to import this module:

PS C:\> Import-Module UpdateServices

The Windows Update Services (WSUS) Module is used to manage a Windows
update server. The cmdlets in this module can retrieve computers, updates, and
products managed by WSUS. It is possible to enable product updating in WSUS
through the use of these cmdlets as well.

Windows 8 and Windows Server 2012 Modules and Cmdlets

[174]

Summary
In this chapter we looked at some of the new modules available in Windows 8 and
Windows Server 2012. We saw through some simple examples, how to use some
of the notable cmdlets in each one of the modules that are for more general use,
and some of the more specific modules for particular roles that are enabled for the
operating system.

The number of PowerShell cmdlets and modules in the new version of the Windows
Management Framework and Windows operating systems is staggering. As we
move forward with the adoption of the next version of these technologies, it will
become necessary to have some knowledge of the capabilities that are built into
the system and understand how to learn more about the functionality we have at
our fingertips. Harnessing the strength that PowerShell offers will make us better
administrators by reducing the need for manual interactions with an ever growing
ecosystem of computer infrastructure.

Index
Symbols
$DailyTrigger variable 45
$process variable 83

A
access denied error 48
Active Directory 42
Active Directory deployment module

about 168
ADDSDomainController cmdlets 169
Install-ADDSForest cmdlets 169
Test ADDSDeployment cmdlets 170

activities
importing, into PowerShell 86-90

Activity 66
ADDSDomainController cmdlets

about 169
usage examples 169

administration 41
AppX module

about 170
AppXPackage cmdlets 171
Get-AppXPackageManifest cmdlets 172

AppXPackage cmdlets
about 171
usage examples 171

AsJob parameter 72
association class

about 120
working with 119-121

authentication 48
auto-save feature 139
AutoSaveMinuteInterval option 141

B
brace matching 138
BranchCache module 173

C
C# 65
CIM 97
CIM and WMI cmdlets

cmdlets 111
differences 110

CIM Authoring project
about 98
MOF files 99

CIM Class
Deprecated attribute 101
DisplayName attribute 101
Experimental attribute 101

CIM cmdlets
about 110, 111
associated classes, working with 119-121
CIM instances, creating 119
CIM sessions 117
exploring 116
New-CimSession cmdlet 117
New-CimSessionOption cmdlet 117

CIM events
Register-CimIndicationEvent 113
registering 113, 114

CIM Explorer view
MOF files, viewing 100

CIM IDE
about 98
IntelliSense support 99

[176]

project types 99
syntax highlighting 99

CIM instances
updating 114-116

CIM_ManagedElement class 102
CIM_Process class 120
CIM Provider project

about 98
adding 103

cmdlet auto-discovery
about 15-17
improvements 18-22
warnings 18

cmdlet Get-Help 14
cmdletization 101
cmdlets 5
CmdletsToExport key 15
CmdletsToExport property 19
cmdlet Update-Help 13
Code folding 138
color settings, ISE options 142
Common Informational Model. See CIM;
communication protocols

using 63
ControlPanelItem cmdlet

about 149
usage examples 149

ConvertFrom-Json cmdlet
about 148
usage examples 148

ConvertTo-Json cmdlet
about 147
usage examples 147

core modules
about 146
ControlPanelItem 149
ConvertFrom-Json 148
ConvertTo-Json 147
Invoke-RestMethod 147
Invoke-WebRequest 146
Rename-Computer 149
TypeData 150
Unblock-File 151

Create method 112
custom PowerShell workflow

adding, to Visual Studio 96
custom workflow parameters 76

D
data

persisting, in workflows 82
data persistence 82
DateTime object 44
DCOMAuthentication parameter 64
Delay parameter

using 63
delegated administration 48, 49
delegated session configuration

creating 53
DestinationPath parameter 13
Disconnect method 101
disk cmdlets

about 162
usage examples 162

Distributed Component Object
Module (DCOM) 63

Distributed Management Task
Force (DMTF) 99

DnsClientCache cmdlet
about 160
usage examples 160

DnsClient module
about 159
DnsClientCache cmdlets 160
DNSGlobalSettings cmdlets 161
Get-DnsServerAddress cmdlets 160
Resolve-DnsName cmdlet 159

DNSGlobalSettings cmdlet
about 161
usage examples 161

DriveLetter property 101

E
editor enhancements, ISE

about 138, 139
auto-save feature 139
brace matching 138
code folding 138
filling 139
zoom level 140

Enable-PSRemoting cmdlet 48
enhanced Restart-Computer cmdlet 61

[177]

enhancements, ISE
about 132
editor enhancements 138-140
intellisense 132-135
ISE options 140
snippets 135, 136
XML file syntax highlighting 138

Enter-PSSession cmdlet 48, 50, 86
Environment variable 115
ExportedCommands property 15
Extended Type System (ETS) 150
Extensible Application Markup

Language. See XAML

F
filePath parameter 95
filling 139
ForEach-Object cmdlet

issues 24, 25
troubleshooting 29-31

Format-List cmdlet 86

G
GenerateUnregistration parameter 108
Get-AppXPackageManifest cmdlets

about 172
usage examples 172

Get-ChildItem cmdlet
about 34
attributes 39
improvements 37-39
issues 35
special operators 38

Get-CimAssociatedInstance cmdlet 119
Get-CimClass cmdlet 108, 111
Get-CimInstance class 110
Get-Command cmdlet 15
Get-DnsServerAddress cmdlet

about 160
usage examples 161

Get-Help cmdlet 14, 72
Get-Module cmdlet 15
Get-Process activity 71
Get-PSSession command 58
Get-PSWorkflowData activity 73
Get-VM cmdlet 18

Get-Website cmdlet 17
Get-WmiObject class 110
Global Assembly Cache (GAC) 93
goals, Windows Workflow 66
Graphical User Interface (GUI) 6

H
HelpInfoURI 12
HelpInfo XML file 12
HttpWebResponseObject 146
Hyper-V module

about 15, 164
usage examples 165
VM cmdlets 164
VMDvdDrive cmdlets 166
VMHardDiskDrive cmdlets 166
VMHost cmdlets 167
VMNetworkAdapter cmdlets 166

I
IdleTimeout parameter 58
Import-Module cmdlet 16
inlineScript keyword 77, 84
installation, Windows PowerShell

Web Access
about 124
configuration 127
Web Server (IIS) role, installing 124-126

Install-ADDSForest cmdlets
about 169
usage examples 169

Integrated Scripting Environment. See ISE
intellisense 132-135
Internet Information Services (IIS) 124
Invoke-CimMethod cmdlet 112
Invoke-Command call 75
Invoke-Jump workflow 78
Invoke-RestMethod cmdlet

about 147
usage examples 147

Invoke-String workflow activity 72
Invoke-WebRequest cmdlet

about 146
usage examples 146

Invoke-WmiMethod cmdlet 112

[178]

ISE
about 123
enhancements 132

ISE add-ons 143
ISE options

about 140
AutoSaveMinuteInterval 141
color settings 142
ISE add-ons 143
MruCount 141
ShowDefaultSnippets 141
ShowIntellisenseInConsolePane 141
ShowIntellisenseInScriptPane 141
ShowLineNumbers 141
ShowOutlining 141
ShowWarningBeforeSavingOnRun 142
UseEnterToSelectInConsolePaneIntellisense

142
UseEnterToSelectInScriptPaneIntellisense

142
UseLocalHelp 142

J
JavaScript Object Notation (JSON) 147
jobs

about 42
scheduling 42, 43

job trigger
about 44
creating 44, 45

L
LightSwitch 65
ListAvailable parameter 15
LiteralPath parameter 13

M
MAML help 12
Managed Object Format (MOF)

about 99
viewing, in CIM Explorer view 100

Measure-VM cmdlet
about 166
usage examples 167

Microsoft 65

Microsoft Assistance Markup
Language (MAML) 12

Microsoft .NET 66
Microsoft workflow activity assembly

adding 90-95
midline tabbing 31
mofcomp 108
MruCount option 141

N
Namespace parameter 107
NanoWBEM 98, 122
NetAdapaterAdvancedProperty cmdlets

about 153
usage examples 153

NetAdapterBinding cmdlets
about 152
usage examples 152

NetAdapter cmdlets
about 152
Disable-NetAdapter 152
Enable-NetAdapater 152
Get-NetAdapter 152
Restart-NetAdapter 152
Set-NetAdapter 152
usage examples 152

NetAdapter module
about 151
NetAdapaterAdvancedProperty

cmdlets 153
NetAdapterBinding cmdlets 152
NetAdapter cmdlets 152

New-Alias cmdlet 86
New-CimSessionOption cmdlet

about 117
parameters 117

New-JobTrigger cmdlet 44, 45
New-PSSession cmdlet 56
New-PSSessionOption cmdlet 58
New-PSWorkflowExecutionOption

cmdlet 75

O
OdbcDriver cmdlets

about 158
usage examples 159

[179]

OdbcDsn cmdlets
about 158
usage examples 158

Online parameter 11
other modules

about 172
BranchCache module 173
Remote Desktop management module 172
Windows Update Services module 173

Out-File cmdlet 96

P
parallel execution, workflows 80, 81
ParallelForEach activity 95
Parallel keyword 80
param keyword 76
partition cmdlets

about 162
usage examples 163

Path parameter 107
Path property 101
permissions 48
PowerShell

about 41, 65
activities, importing into 86-90
connecting, to newly registered

session configuration 54
features 97
new session configurations, registering 53
session configurations, examining 50, 51
session configurations, modifying 51, 52
Windows Workflow, integrating with 68

PowerShell 2.0 42
PowerShell 3.0 66
PowerShell ISE. See ISE
PowerShell metadata

generating 105-107
PowerShell Session Configuration 50
PowerShell workflow

steps 69-71
PowerShell workflows

limitations 83
using, in Visual Studio 90

PowerShell workflows, limitations
activities, running on local machine 85
no activity implementation, in cmdlet 85

no advanced function blocks 85
variable scope 83, 84

Prefix parameter 20
PrintConfiguration cmdlets

about 157
usage examples 157

Printer cmdlets
about 156
usage examples 157

PrintJob cmdlets
about 157
usage examples 157

PrintManagement module
about 156
PrintConfiguration cmdlets 157
Printer cmdlets 156
PrintJob cmdlets 157

ProcessName property 113
ProcessStartupInformation parameter 113
product

installing 62
programming 65
project types, CIM IDE

CIM Authoring 98
CIM Providers 98

provider cmdlets
creating automatically 109
interacting, with WMI 110

ProviderName parameter 107
PSComputerName parameter 72, 75
PSCustomObject 148
PSModuleAutoLoadingPreference

variable 17
PSModuleInfo object 14
PSPersist parameter 72
PSSessionOption variable 58
PSWAAuthorizationRule cmdlets 127

R
RandomDelay parameter 44
Recurse parameter 14
Register-CimProvider

about 107
Namespace parameter 107
parameters 107

[180]

Path parameter 107
ProviderName parameter 107

registered session configuration
connecting to 54

Register-PSSessionConfiguration
cmdlet 53, 75

Register-ScheduledJob cmdlet 44, 45
Remote Desktop management module 172
remote execution, Windows Workflow 75
remote sessions 55
Remove-PSSession cmdlet 58
Rename-Computer cmdlet

about 149
usage examples 150

Representational State Transfer
(REST) methods 147

resilient sessions
example 55
experimenting with 59, 60
using 56-59

Resolve-DnsName cmdlet
about 159
usage examples 159

Restart-Computer cmdlet 61
robust system 49
roles and feature based modules

about 164
Active Directory deployment module 168
AppX module 170
Hyper-V module 164

Run As Administrator command 48
RunAsCredential parameter 53

S
Save-Help cmdlet 13
scheduled jobs

viewing, in Windows Task Scheduler 46-48
ScheduledJobTrigger job 44
scope keyword 84
ScriptBlock parameter 31
scripting 65
scripts

in workflows 77
Secure Socket Layer (SSL) 127
SecurityDescriptorSddl parameter 53
Sequence keyword 80

Server Manager 124
Server Message Block (SMB) 153
server pool 125
session configurations

about 50
examining 50, 51
modifying 51, 52
registering 53

Set-PSBreakpoint cmdlet 86
Set-PSWorkflowData activity 73
Set-WmiInstance cmdlet 114
Show-Command cmdlet 7-10, 86
ShowDefaultSnippets option 141
ShowIntellisenseInConsolePane option 141
ShowIntellisenseInScriptPane option 141
ShowLineNumbers option 141
ShowOutlining option 141
ShowSecurityDescriptorUI parameter 53
ShowWarningBeforeSavingOnRun

option 142
SmbOpenFile cmdlets

about 155
usage examples 156

SmbSession cmdlets
usage examples 154

SmbShareAccess cmdlets
about 155
usage examples 155

SmbShare cmdlets
about 154
usage examples 154

SmbShare module
about 153
SmbOpenFile cmdlets 155
SmbSession cmdlets 154
SmbShareAccess cmdlets 155
SmbShare cmdlets 154

snippets, ISE
about 135, 136
defining 136

SourceIdentifier 113
standard modules

about 151
DnsClient module 159
NetAdapter module 151
PrintManagement module 156

[181]

SmbShare module 153
storage module 161
Windows data access control module 158

Start-Job command 32
Start-Process activity 71
Start-Process cmdlet 114
Start-Process command 63, 80
Start-Workflow activity 71
stopTime variable 55
Storage module

about 161
disk cmdlets 162
partition cmdlets 162
volume cmdlets 163

T
tab completion

about 31
enhancing 31-34

TabExpansion function 32
Team Foundation Server (TFS) 86
Test ADDSDeployment cmdlets

about 170
usage examples 170

Test-Path activity 95
threads 42
TimeSpan object 44
troubleshooting

ForEach-Object cmdlet 29
Where-Object cmdlet 25

TypeData cmdlet
about 150
usage examples 150

U
Unblock-File cmdlet

about 151
usage examples 151

Universal Resource Identifiers (URI) 147
updatable help system

about 11
cmdlet Get-Help 14
cmdlet Save-Help 12
cmdlet Update-Help 13
components 11, 12

Update-Help 12

Update-Help cmdlet 13
UseEnterToSelectInConsolePane

Intellisense option 142
UseEnterToSelectInScriptPaneIntellisense

option 142
UseLocalHelp option 142
user module directory 20

V
VB script 41
VirtualBoxModule 18
Virtual Hard Disk (VHD) 125
Visual Basic .NET 66
Visual Studio

about 66, 98
custom PowerShell workflow, adding to 96
download link 98
PowerShell workflows, using in 90

Visual Studio 2010 98
VMDvdDrive cmdlets 166
VMHardDiskDrive cmdlets 166
VMHost cmdlets

about 167
usage examples 167

VMNetworkAdapter cmdlets
about 166
usage examples 166

volume cmdlets
about 163
usage examples 163, 164

W
Wait parameter 63
WDAC module 158
web access console

additional input and output 130, 131
multiline statements 131, 132
working with 129

Web Server (IIS) role 125
Where-Object cmdlet

issues 24, 25
troubleshooting 25-28

WIN32_NetworkDrive class 103
Win32_Process class 112
Win32_Process Create method 112
Win32_Process object 120

[182]

Windows data access control module
about 158
OdbcDriver cmdlets 158
OdbcDsn cmdlets 158

Windows Management Framework 97
Windows Management Instrumentation.

See WMI
Windows PowerShell 5
Windows PowerShell Web Access

accessing 128, 129
configuring 124, 127
installing 124
users, authorizing 127
web access console, working with 129

Windows Remote Management
(WinRM) 49

Windows Task Scheduler
about 42
scheduled jobs, viewing in 46-48

Windows Update Services module 173
Windows Update Services (WSUS)

Module 173
Windows Workflow

about 65, 66
as jobs 74, 75
goals 66
integrating, with PowerShell 68
remote execution 75

WMI 97

WMI cmdlets 110, 111
WMI provider

CIM Provider project, adding 103
code, generating for

implementation 103, 105
creating 101
implementing 101, 102
PowerShell metadata, generating 105-107
registering 107, 108

WMI Query Language (WQL) 119
workflow common parameters 72-74
workflows

data, persisting in 82
parallel execution 80, 81
scripts 77
steps 69-71
working 78, 79

WSManAuthentication parameter 64
WSMan service 110

X
XAML 68
XML file syntax highlighting, ISE 138

Z
zone identifier 151
zoom level 140

Thank you for buying
Microsoft Windows PowerShell

3.0 First Look

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft SharePoint 2010 and
Windows PowerShell 2.0:
Expert Cookbook
ISBN: 978-1-849684-10-1 Paperback: 310 pages

50 advanced recipes for administrators and IT Pros
to master Microsoft SharePoint 2010 and Microsoft
PowerShell 2.0 automation

1. Dive straight into expert recipes for SharePoint
and PowerShell administration without
dwelling on the basics

2. Master how to administer BCS in SharePoint,
automate the configuration of records
management features, create custom
PowerShell cmdlets, and much more in
this book and e-book

3. A hands-on cookbook focusing on only the
most high level tips and tricks for mastering
SharePoint and PowerShell administration

Microsoft Windows Server
AppFabric Cookbook
ISBN: 978-1-849684-18-7 Paperback: 428 pages

60 recipes for getting the most out of WCF and WF
services, including the latest capabilities in AppFabric
1.1 for Windows Server

1. Gain a solid understanding of the capabilities
provided by Windows Server AppFabric with a
pragmatic, hands-on, results-oriented approach
with this book and eBook

2. Learn how to apply the WCF and WF skills
you already have to make the most of what
Windows Server AppFabric has to offer

Please check www.PacktPub.com for information on our titles

Microsoft Exchange 2010
PowerShell Cookbook
ISBN: 978-1-849682-46-6 Paperback: 480 pages

Manage and maintain your Microsoft Exchange 2010
environment with Windows PowerShell 2.0 and the
Exchange Management Shell

1. Step-by-step instructions on how to write
scripts for nearly every aspect of Exchange 2010
including the Client Access Server, Mailbox,
and Transport server roles

2. Understand the core concepts of Windows
PowerShell 2.0 that will allow you to write
sophisticated scripts and one-liners used with
the Exchange Management Shell

3. Learn how to write scripts and functions,
schedule scripts to run automatically, and
generate complex reports

Microsoft Windows Intune 2.0:
Quickstart Administration
ISBN: 978-1-849682-96-1 Paperback: 312 pages

Manage your PCs in the Enterprise through the
Cloud with Microsoft Windows Intune

1. This book and e-book will enable you to deliver
Windows PC management to your users, no
matter where in the world they physically sit
and irrespective of your current knowledge of
management and support processes.

2. Learn about moving to a single management
strategy that enables flexibility required by
different user types, including those not owned
by the business.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Find What You're Looking for
	The Show-Command cmdlet
	Updatable contextual help
	What help is made of
	The Save-Help cmdlet
	The Update-Help cmdlet
	The Get-Help cmdlet

	The auto-discovery cmdlet
	Understanding cmdlet auto-discovery
	Things to know about auto-discovery

	Summary

	Chapter 2: Usability Enhancements
	The problem with Where-Object and ForEach-Object
	Fixing the problem with Where-Object
	Fixing the problem with ForEach-Object

	Enhancements to tab completion
	Improvements to Get-ChildItem
	The problem with Get-ChildItem
	A better Get-ChildItem

	Summary

	Chapter 3: Improved Administration
	Scheduling jobs
	Creating a job trigger
	Viewing scheduled jobs in the Windows
Task Scheduler

	Delegated administration
	The need for a more robust system
	Examining PowerShell session configurations
	Modifying existing session configurations

	Creating a delegated session configuration
	Registering new session configurations
	Connecting to a newly registered session configuration

	Robust and resilient remote sessions
	A long running example
	Using resilient sessions
	Experimenting with resilient sessions

	Improved Restart-Computer
	The enhanced Restart-Computer
	Installing a product which requires a restart
	Using the delay parameter
	Using different communication protocols

	Summary

	Chapter 4: Windows Workflow
in PowerShell
	Understanding Windows Workflow
	Integrating Windows Workflow
with PowerShell
	First steps in workflows
	Workflow common parameters
	Workflow as a job
	Remote execution
	Custom workflow parameters
	Scripts in workflows
	Working between workflows
	Parallel execution
	Persisting data in workflows

	Limitations of PowerShell workflows
	Variable scope
	No advanced function blocks
	Activities that run only on the local machine
	The cmdlets that have no activity implementation
	Importing activities into PowerShell

	Using PowerShell workflows in
Visual Studio
	Adding a Microsoft workflow
activity assembly
	Adding a custom PowerShell workflow to Visual Studio

	Summary

	Chapter 5: Using the Common Informational Model
	Introduction to the CIM IDE
	Implementing a simple WMI provider
	Adding a CIM Provider project
	The implementation details
	Generating PowerShell metadata
	Registering a WMI provider

	Automatically creating provider cmdlets
	Why new cmdlets to interact with WMI?

	Differences between the CIM and
WMI cmdlets
	Cmdlet differences between CIM and WMI
	Registering CIM events
	Updating CIM instances

	Exploring the new CIM cmdlets
	CIM sessions
	Creating new CIM instances
	Working with associated classes

	NanoWBEM
	Summary

	Chapter 6: New and Improved PowerShell Hosts
	Installing the Windows PowerShell Web Access feature
	Configuring the Windows PowerShell
Web Access
	Authorizing users

	Accessing the PowerShell Web Access

	Working with the PowerShell Web
Access console
	Additional input and output
	Multiline statements

	Enhancements to the PowerShell ISE
	Intellisense
	Snippets
	Defining our own snippets

	XML file syntax highlighting
	Other editor enhancements
	ISE options
	List of ISE options
	Colors
	ISE add-ons

	Summary

	Chapter 7: Windows 8 and Windows Server 2012 Modules
and Cmdlets
	Core modules
	Invoke-WebRequest
	Usage examples

	Invoke-RestMethod
	Usage examples

	ConvertTo-Json
	Usage examples

	ConvertFrom-Json
	Usage examples

	ControlPanelItem
	Usage examples

	Rename-Computer
	Usage examples

	TypeData
	Usage examples

	Unblock-File
	Usage examples

	Standard modules
	NetAdapter module
	NetAdapter cmdlets
	NetAdapterBinding
	NetAdapaterAdvancedProperty

	SmbShare module
	SmbShare
	SmbSession
	SmbShareAccess
	SmbOpenFile

	PrintManagement module
	Printer
	PrintJob
	PrintConfiguration

	Windows data access control module
	OdbcDsn
	OdbcDriver

	DnsClient module
	Resolve-DnsName
	DnsClientCache
	Get-DnsServerAddress
	DNSGlobalSettings

	Storage module
	Disk
	Partition
	Volume

	Roles and feature based modules
	Hyper-V module
	VM
	VMDvdDrive, VMHardDiskDrive, and VMNetworkAdapter
	Measure-VM
	VMHost

	Active Directory deployment module
	Install-ADDSForest
	ADDSDomainController
	Test ADDSDeployment

	AppX module
	AppXPackage
	Get-AppXPackageManifest

	Other modules
	Remote Desktop management module
	BranchCache module
	Windows Update Services module

	Summary

	Index

